Reliable Deniable Communication:
Hiding Messages in Noise
Pak Hou Che
Mayank Bakshi
Sidharth Jaggi
The Chinese University
of Hong Kong
The Institute of
Network Coding
Alice
Bob
Reliability
Alice
Bob
Reliability
Deniability
Willie
(the Warden)
Aliceβs Encoder
M
T
πΌπ π = 0, π = π
πΌπ π = 1, π = πΈππ(π)
πππ π πππ π β {1, β¦ , π}
tππππ . π π‘ππ‘π’π π β {0, 1}
π = 2π( π)
πβπππ’πβππ’π‘ π = log π
log π
π
ππππ‘ππ£π π‘βπππ’πβππ’π‘ π =
π
π
Aliceβs Encoder
M
T
πΌπ π = 0, π = π
πΌπ π = 1, π = πΈππ(π)
Message π β {1, β¦ , π}
Trans. Status π β {0, 1}
π = 2π(
π)
Bobβs Decoder
π
BSC(pb)
ππ
π = π·ππ(ππ )
π
1 β π ππππππππ
Pr π = π > 1 β π
Aliceβs Encoder
M
T
Bobβs Decoder
πΌπ π = 0, π = π
π
BSC(pb)
πΌπ π = 1, π = πΈππ(π)
π = π·ππ(ππ )
π
1 β π ππππππππ
Pr π = π > 1 β π
Message π β {1, β¦ , π}
Trans. Status π β {0, 1}
π = 2π(
ππ
π)
BSC(pw)
ππ€
π = π·ππ(ππ€ )
π
Willieβs (Best) Estimator
Bash, Goeckel & Towsley [1]
Shared secret
π( π log π) bits
AWGN channels
But capacity only π
π bits
[1] B. A. Bash, D. Goeckel and D. Towsley, βSquare root law for communication with low
probability of detection on AWGN channels,β in Proceedings of the IEEE International
Symposium on Information Theory (ISIT), 2012, pp. 448β452.
This work
No shared secret
BSC(pb)
pb < pw
BSC(pw)
Aliceβs Encoder
M
T
Bobβs Decoder
πΌπ π = 0, π = π
π
BSC(pb)
πΌπ π = 1, π = πΈππ(π)
π = π·ππ(ππ )
π
1 β π ππππππππ
Pr π = π > 1 β π
Message π β {1, β¦ , π}
Trans. Status π β {0, 1}
π = 2π(
ππ
π)
BSC(pw)
ππ€
π = π·ππ(ππ€ )
π
Willieβs (Best) Estimator
Hypothesis Testing
Willieβs Estimate
Aliceβs
Transmission
Status
β’ πΌ = Pr π = 1 π = 0 , π½ = Pr π = 0 π = 1
Hypothesis Testing
Willieβs Estimate
Aliceβs
Transmission
Status
Hypothesis Testing
Willieβs Estimate
Aliceβs
Transmission
Status
Hypothesis Testing
Willieβs Estimate
Aliceβs
Transmission
Status
Intuition
β’ π = 0, π²π€ = π³π€ ~Binomial(π, ππ€ )
Intuition
β’ π = 0, π²π€ = π³π€ ~Binomial π, ππ€
β’ πβππ π = 1,
Theorem 1 (Wt(c.w.))
(high deniability => low weight codewords)
β’ Too many codewords with weight βmuchβ greater
than π π, then the system is βnot veryβ deniable
Theorems 2 & 3
(Converse & achievability for reliable & deniable comm.)
Theorems 2 & 3
ππ€
1/2
pb>pw
0
1/2
ππ
Theorems 2 & 3
ππ€
1/2
π=0
0
1/2
ππ
Theorems 2 & 3
ππ€
pw=1/2
1/2
0
1/2
ππ
Theorems 2 & 3
ππ€
1/2
N ο» 2(1ο H ( p b ))n
(BSC(pb))
ο ο
0
1/2
ππ
Theorems 2 & 3
ππ€
1/2
pb=0
0
1/2
ππ
Theorems 2 & 3
ππ€
π = 2π(
1/2
0
π log π)
,
π
= 2π(
π
1/2
π log π)
ππ
Theorems 2 & 3
ππ€
1/2
pw>pb
0
1/2
ππ
Theorems 2 & 3
ππ€
π = 2π(
π)
1/2
βStandardβ IT inequalities
+
Wt(βmost codewordsβ)<βn
(Thm 1)
0
1/2
ππ
Theorems 2 & 3
ππ€
1/2
Main thm:
Achievable region
π = 2Ξ© ( π)
0
1/2
ππ
log
π
βπ
π/2
logarithm of
# codewords
0
n
π€π‘π» (ππ€ )
log(# codewords)
ππ»(ππ€ )
π±=0
Pr(π€π‘π» π²π€ )
ππ€
π(1
π)
0
ππ€ π β π( π)
ππ€ π ππ€ π + π( π)
n
π€π‘π» (π²π€ )
log(# codewords)
ππ»(ππ€ β π)
Pr (π€π‘π» π²π€ )
π π
π,ππ€
π(1
π)
n
0
(ππ€ β π)π β π( π)
(ππ€ β π)π
(ππ€ β π)π + π( π)
π€π‘π» (π²π€ )
Theorem 3 β Reliability proof sketch
Random code
Weight π( π)
1000001000000000100100000010000000100
0001000000100000010000000010000000001
0010000100000001010010000000100010011
2π(
π) codewords
.
.
.
0000100000010000000000010000000010000
Theorem 3 β Reliability proof sketch
Weight π( π)
β’ E(Intersection of 2 codewords) = O(1)
β’ βMostβ codewords βwell-isolatedβ
1000001000010000100100000010000000100
0001000000100000010000000010000000001
0010000100000001010010000000100010011
.
.
.
0000100000010000000000010000000010000
Theorem 3 β dmin decoding
x
+
π( π)
xβ
β’Pr(x decoded to xβ) < 2βπ(
π)
Theorem 3 β Deniability proof sketch
β’ Recall: want to show π π0 , π1 < π
log(# codewords)
ππ»(ππ€ β π)
Pr (π€π‘π» π²π€ )
π π
π,ππ€
π(1
π)
n
0
(ππ€ β π)π β π( π)
(ππ€ β π)π
(ππ€ β π)π + π( π)
π€π‘π» (π²π€ )
Theorem 3 β Deniability proof sketch
β’ Recall: want to show π π0 , π1 < π
π0
π1
Theorem 3 β Deniability proof sketch
log(# codewords)
0
n
Theorem 3 β Deniability proof sketch
logarithm of
# codewords
0
n
π€π‘π» (ππ€ )
Theorem 3 β Deniability proof sketch
π¬πͺ (π1 )!!!
π0
π1
Theorem 3 β Deniability proof sketch
β’ π π0 , π1 β€ π π0 , π¬πͺ (π1 ) + π π¬πͺ (π1 ), π1
π¬πͺ (π1 )!!!
π0
π1
Theorem 3 β Deniability proof sketch
π¬πͺ (π1 )
π1
Theorem 3 β Deniability proof sketch
logarithm of
# codewords
0
ππ€ π β π( π)
ππ€ π ππ€ π + π( π)
π€π‘π» (ππ€ )
n
Theorem 4
logarithm of
# codewords
0
n
π€π‘π» (ππ€ )
Theorem 4
Too few codewords
=> Not deniable
logarithm of
# codewords
0
n
π€π‘π» (ππ€ )
Summary
Summary
© Copyright 2026 Paperzz