Research Article -Metric Space: A Generalization

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2013, Article ID 504609, 7 pages
http://dx.doi.org/10.1155/2013/504609
Research Article
πœƒ-Metric Space: A Generalization
Farshid Khojasteh,1 Erdal KarapJnar,2 and Stojan RadenoviT3
1
Department of Mathematics, Arak Branch, Islamic Azad University, Arak, Iran
Department of Mathematics, Atilim University, İncek, 06836 Ankara, Turkey
3
Faculty of Mechanical Engineering, University of Belgrade, Kraljice Marije 16, 11120 Belgrade, Serbia
2
Correspondence should be addressed to Erdal KarapΔ±nar; [email protected]
Received 27 May 2013; Accepted 25 July 2013
Academic Editor: Bashir Ahmad
Copyright © 2013 Farshid Khojasteh et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.
We introduce the notion of πœƒ-metric as a generalization of a metric by replacing the triangle inequality with a more generalized
inequality. We investigate the topology of the spaces induced by a πœƒ-metric and present some essential properties of it. Further, we
give characterization of well-known fixed point theorems, such as the Banach and Caristi types in the context of such spaces.
1. Introduction
Celebrated Banach contraction mapping principle [1] can
be considered as a revolution in fixed point theory and
hence in nonlinear functional analysis. The statement of this
well-known principle is simple, but the consequences are so
strong: every contraction mapping in a complete metric space
has a unique fixed point. Since fixed point theory has been
applied to different sciences and also distinct branches of
mathematics, this pioneer result of Banach has been generalized, extended, and improved in various ways in several
abstract spaces. After that, many authors stated many types,
generalizations, and applications of fixed point theory until
now (see also [2, 3]).
In 1976, Caristi [4] defined an order relation in a metric
space by using a functional under certain conditions and
proved a fixed point theorem for such an ordered metric
space. Denote R and N as the sets of all real and natural
numbers, respectively.
The order relation is defined as follows.
Lemma 1. Let (𝑋, 𝑑) be a metric space and πœ™ : 𝑋 β†’ R a functional. Define the relation β€œβͺ―” on 𝑋 by
π‘₯ βͺ― 𝑦 ⇐⇒ 𝑑 (π‘₯, 𝑦) ≀ πœ™ (π‘₯) βˆ’ πœ™ (𝑦) .
(1)
Then, β€œβ‰€β€ is a partial order relation on 𝑋 introduced by πœ™, and
(𝑋, 𝑑) is called an ordered metric space introduced by πœ™.
Apparently, if π‘₯ βͺ― 𝑦, then πœ™(π‘₯) βͺ° πœ™(𝑦).
Caristi’s fixed point theorem states that a mapping 𝑇 :
𝑋 β†’ 𝑋 has a fixed point provided that (𝑋, 𝑑) is a complete
metric space and there exists a lower semicontinuous map
πœ™ : 𝑋 β†’ R such that
𝑑 (π‘₯, 𝑇π‘₯) ≀ πœ™ (π‘₯) βˆ’ πœ™ (𝑇π‘₯) ,
for every π‘₯ ∈ 𝑋.
(2)
This general fixed point theorem has found many applications
in nonlinear analysis.
Many authors generalized Caristi’s fixed point theorem
and stated many types of it in complete metric spaces (see
[5–8]). In particular, in 2010, Amini-Harandi [6] extended
Caristi’s fixed point and Takahashi’s minimization theorems
in complete metric space via the extension of partial ordered
relation which is introduced in Lemma 1 and introduced
some applications of such results.
One of the interesting generalizations of the notion of a
metric is the concept of a fuzzy metric, given by Kramosil and
Michálek [9], and Grabiec [10], independently. Later, George
and Veeramani [11] investigated fuzzy metric structure and
observed some important topological properties of such
spaces. Furthermore, the authors [9–11] announced existence
2
Mathematical Problems in Engineering
and uniqueness of a fixed point of certain mappings in the
framework of such spaces.
(πœƒ5 ) πœƒ(𝑑, 𝑠) = 𝑑 + 𝑠 + 𝑑𝑠,
Definition 2 (see [11]). A binary operation βˆ— : [0, 1]×[0, 1] β†’
[0, 1] is a continuous 𝑑-norm if it is a topological monoid with
unit 1 such that π‘Ž βˆ— 𝑏 ≀ 𝑐 βˆ— 𝑑 whenever π‘Ž ≀ 𝑐 and 𝑏 ≀ 𝑑
(π‘Ž, 𝑏, 𝑐, 𝑑 ∈ [0, 1]).
(πœƒ7 ) πœƒ(𝑑, 𝑠) = (𝑑 + 𝑠)(1 + 𝑑𝑠).
Definition 3 (see [9, 10]). The 3-tuple (𝑋, 𝑀, βˆ—) is said to be a
fuzzy metric space if 𝑋 is an arbitrary set, βˆ— is a continuous
𝑑-norm, and 𝑀 : 𝑋 × π‘‹ × [0, +∞) β†’ [0, 1] is a fuzzy set
satisfying the following conditions:
(1) 𝑀(π‘₯, 𝑦, 0) = 0,
(2) 𝑀(π‘₯, 𝑦, 𝑑) = 1 for all 𝑑 > 0 if and only if π‘₯ = 𝑦,
(3) 𝑀(π‘₯, 𝑦, 𝑑) = 𝑀(𝑦, π‘₯, 𝑑),
(πœƒ6 ) πœƒ(𝑑, 𝑠) = 𝑑 + 𝑠 + βˆšπ‘‘π‘ ,
Example 5 shows that the category of 𝐡-actions is
uncountable. Next, we derive some lemmas which play a
crucial role in our main results.
Lemma 6. Let
{
{
{
Ξ¨ ={
{
{𝑓 : [0, +∞) 󳨀→ [0, +∞) :
{
𝑓 𝑖𝑠 π‘π‘œπ‘›π‘‘π‘–π‘›π‘’π‘œπ‘’π‘ ,
π‘ π‘‘π‘Ÿπ‘–π‘π‘‘π‘™π‘¦ π‘–π‘›π‘π‘Ÿπ‘’π‘Žπ‘ π‘–π‘›π‘”
𝑓 (0) = 0
𝑓 (𝑑) < 𝑑 βˆ€π‘‘ > 0.
}
}
}
.
}
}
}
}
(4)
Then, there exists a correspondence between Ξ₯ and Ξ¨. In other
words, Ξ₯ is an infinite set.
(4) 𝑀(π‘₯, 𝑦, 𝑑) βˆ— 𝑀(𝑦, 𝑧, 𝑑) ≀ 𝑀(π‘₯, 𝑧, 𝑑 + 𝑠),
(5) 𝑀(π‘₯, 𝑦, β‹…) : [0, +∞) β†’ [0, 1] is left continuous,
Proof. For each (𝑑, 𝑠) ∈ [0, +∞) × [0, +∞), define πœƒπ‘“ (𝑑, 𝑠) =
πœ†π‘“(𝑑 + 𝑠), where πœ† ∈ [0, 1) and 𝑓 ∈ Ξ¨. It is previous that πœƒπ‘“ ∈
Ξ₯. Now, define
where π‘₯, 𝑦, 𝑧 ∈ 𝑋 and 𝑑, 𝑠 > 0.
In this paper, inspired from the definition of fuzzy metric
spaces, we will introduce πœƒ-metric as an extension of metric
spaces which is obtained by replacing the triangle inequality
with a more generalized inequality. We also investigate the
topology of the πœƒ-metric space and observe some fundamental properties of it. Furthermore, we give the characterization
of the Banach and Caristi type fixed point theorems in the
context of πœƒ-metric space.
First, we give the following definition.
Definition 4. Let πœƒ : [0, +∞) × [0, +∞) β†’ [0, +∞) be a continuous mapping with respect to each variable. Let Im(πœƒ) =
{πœƒ(𝑠, 𝑑) : 𝑠 β‰₯ 0, 𝑑 β‰₯ 0}. A mapping πœƒ is called an 𝐡-action if
and only if it satisfies the following conditions:
(I) πœƒ(0, 0) = 0 and πœƒ(𝑑, 𝑠) = πœƒ(𝑠, 𝑑) for all 𝑑, 𝑠 β‰₯ 0,
𝐻 : Ξ¨ 󳨀→ Ξ₯
𝐻 (𝑓) = πœƒπ‘“ .
(5)
𝐻 is well-defined and injective function which completes the
proof.
Lemma 7. Let πœƒ be a 𝐡-action. For each π‘Ÿ ∈ Im(πœƒ) and 𝑠 ∈
𝐡 = [0, π‘Ÿ], there exist 𝑑 ∈ [0, π‘Ÿ] and a function πœ‚ : [0, +∞) ×
[0, +∞) β†’ [0, +∞) such that πœ‚(π‘Ÿ, 𝑠) = 𝑑. Then, one derives
the following.
(π‘Ž1 ) πœ‚(0, 0) = 0.
(π‘Ž2 ) πœƒ(πœ‚(π‘Ÿ, 𝑠), 𝑠) = π‘Ÿ and πœƒ(π‘Ÿ, πœ‚(𝑠, π‘Ÿ)) = 𝑠.
(π‘Ž3 ) πœ‚ is continuous with respect to the first variable.
(II)
(π‘Ž4 ) If πœ‚(π‘Ÿ, 𝑠) β‰₯ 0, then 0 ≀ 𝑠 ≀ π‘Ÿ.
πœƒ (𝑠, 𝑑) < πœƒ (𝑒, V)
either 𝑠 < 𝑒, 𝑑 ≀ V,
if {
or 𝑠 ≀ 𝑒, 𝑑 < V,
(3)
(III) for each π‘Ÿ ∈ Im(πœƒ) and for each 𝑠 ∈ [0, π‘Ÿ], there exists
𝑑 ∈ [0, π‘Ÿ] such that πœƒ(𝑑, 𝑠) = π‘Ÿ,
(IV) πœƒ(𝑠, 0) ≀ 𝑠, for all 𝑠 > 0.
We denote by Ξ₯ the set of all 𝐡-actions.
Example 5. The following functions are examples of 𝐡action:
(πœƒ1 ) πœƒ(𝑑, 𝑠) = π‘˜(𝑑 + 𝑠), where π‘˜ ∈ (0, 1],
(πœƒ2 ) πœƒ(𝑑, 𝑠) = π‘˜(𝑑 + 𝑠 + 𝑑𝑠), where π‘˜ ∈ (0, 1],
(πœƒ3 ) πœƒ(𝑑, 𝑠) = 𝑑𝑠/(1 + 𝑑𝑠),
(πœƒ4 ) πœƒ(𝑠, 𝑑) = βˆšπ‘ 2 + 𝑑2 ,
Proof. By (III) of Definition 4, for each π‘Ÿ ∈ Im(πœƒ) and for each
𝑠 ∈ [0, π‘Ÿ], there exists 𝑑 β‰₯ 0 such that πœƒ(𝑑, 𝑠) = π‘Ÿ. Now, define
πœ‚(π‘Ÿ, 𝑠) = 𝑑. Let 𝑑 and 𝑑󸀠 be two values such that πœ‚(π‘Ÿ, 𝑠) = 𝑑
and πœ‚(π‘Ÿ, 𝑠) = 𝑑󸀠 . If 𝑑 =ΜΈ 𝑑󸀠 , then 𝑑 < 𝑑󸀠 or 𝑑 > 𝑑󸀠 . If 𝑑 < 𝑑󸀠 , then
π‘Ÿ = πœƒ(𝑑, 𝑠) < πœƒ(𝑑󸀠 , 𝑠) = π‘Ÿ and this is a contradiction. For 𝑑 > 𝑑󸀠 ,
we have the same argument. Thus, πœ‚ is well defined.
On the other hand, (π‘Ž1 ), (π‘Ž2 ), and (π‘Ž4 ) are straightforward
from (III) of Definition 4. Also, (π‘Ž3 ) holds since if π‘Ÿ ∈ Im(πœƒ)
and {π‘Ÿπ‘› } is a sequence in Im(πœƒ) such that π‘Ÿπ‘› β†’ π‘Ÿ, then
πœƒ(πœ‚(π‘Ÿπ‘› , β‹…), β‹…) = π‘Ÿπ‘› . Thus,
πœƒ ( lim πœ‚ (π‘Ÿπ‘› , β‹…) , β‹…) = lim πœƒ (πœ‚ (π‘Ÿπ‘› , β‹…) , β‹…)
π‘›β†’βˆž
π‘›β†’βˆž
(6)
= π‘Ÿ = πœƒ (πœ‚ (π‘Ÿ, β‹…) , β‹…) .
If lim𝑛 β†’ ∞ πœ‚(π‘Ÿπ‘› , β‹…) > πœ‚(π‘Ÿ, β‹…) or lim𝑛 β†’ ∞ πœ‚(π‘Ÿπ‘› , β‹…) < πœ‚(π‘Ÿ, β‹…), then
by (II) of Definition 4 and (6), we conclude a contradiction.
So, πœ‚ is continuous with respect to the first variable.
Mathematical Problems in Engineering
3
The following definition arises from Lemma 7.
Definition 8. The function πœ‚, mentioned in Lemma 7, is called
𝐡-inverse action of πœƒ. One says that πœƒ is regular if πœ‚ satisfies
πœ‚(π‘Ÿ, π‘Ÿ) = 0, for each π‘Ÿ > 0.
Ξ₯π‘Ÿ .
The set of all regular 𝐡-inverse actions will be denoted by
Example 9. Let πœƒ1 (𝑑, 𝑠) = 𝑑 + 𝑠 and πœƒ2 (𝑑, 𝑠) = βˆšπ‘› 𝑑𝑛 + 𝑠𝑛 . It is evident that πœ‚1 (𝑑, 𝑠) = 𝑑 βˆ’ 𝑠 and πœ‚(𝑑, 𝑠) = βˆšπ‘› 𝑑𝑛 βˆ’ 𝑠𝑛 . Furthermore,
πœ‚1 , πœ‚2 satisfy all the conditions of Lemma 7. Note that πœƒ1 , πœƒ2
are regular.
Lemma 10. If π‘Ž ∈ 𝑋, 𝑐 ∈ Im(πœƒ) and 𝑏 ∈ [0, 𝑐], then πœƒ(π‘Ž, 𝑏) ≀ 𝑐
implies that π‘Ž ≀ πœ‚(𝑐, 𝑏).
Example 13. Let 𝑋 = {π‘₯, 𝑦, 𝑧} and π‘‘πœƒ : 𝑋 × π‘‹ β†’ [0, +∞)
defined by
π‘‘πœƒ (π‘₯, 𝑦) = 2,
π‘‘πœƒ (π‘₯, π‘₯) = 0,
π‘‘πœƒ (π‘₯, 𝑧) = 6,
π‘‘πœƒ (𝑦, 𝑦) = 0,
π‘‘πœƒ (π‘₯, 𝑦) = π‘‘πœƒ (𝑦, π‘₯) ,
π‘‘πœƒ (𝑧, 𝑦) = 10,
π‘‘πœƒ (𝑧, 𝑧) = 0,
π‘‘πœƒ (π‘₯, 𝑧) = π‘‘πœƒ (𝑧, π‘₯) ,
(9)
π‘‘πœƒ (𝑧, 𝑦) = π‘‘πœƒ (𝑧, π‘₯) .
For πœƒ(𝑠, 𝑑) = 𝑠 + 𝑑 + 𝑠𝑑, the function π‘‘πœƒ forms a metric, and
hence, the pair (𝑋, π‘‘πœƒ ) is a πœƒ-metric space.
Remark 14. Notice that π‘‘πœƒ , in Example 13, is not a metric on
𝑋, since we have π‘‘πœƒ (𝑧, 𝑦) > π‘‘πœƒ (π‘₯, 𝑦) + π‘‘πœƒ (π‘₯, 𝑧).
Proof. Suppose, on the contrary, that πœ‚(𝑐, 𝑏) < π‘Ž. Then, we
have
Definition 15. Let (𝑋, π‘‘πœƒ ) be a πœƒ-metric space. An open ball
π΅π‘‘πœƒ (π‘₯, π‘Ÿ) at a center π‘₯ ∈ 𝑋 with a radius π‘Ÿ ∈ Im(πœƒ) is defined
as follows:
𝑐 = πœƒ (πœ‚ (𝑐, 𝑏) , 𝑏) < πœƒ (π‘Ž, 𝑏) ,
π΅π‘‘πœƒ (π‘₯, π‘Ÿ) = {𝑦 ∈ 𝑋 : π‘‘πœƒ (π‘₯, 𝑦) < π‘Ÿ} .
(7)
(10)
Lemma 16. Every open ball is an open set.
a contradiction.
Proof. We show that, for each π‘₯ ∈ 𝑋 and π‘Ÿ > 0 and for each
𝑦 ∈ π΅π‘‘πœƒ (π‘₯, π‘Ÿ), there exists 𝛿 > 0 such that
2. Main Results
π΅π‘‘πœƒ (𝑦, 𝛿) βŠ‚ π΅π‘‘πœƒ (π‘₯, π‘Ÿ) .
(11)
In this section, we introduce the notion πœƒ-metric and discuss
the induced topology generated by π‘‘πœƒ on a nonempty subset
𝑋. In particular, we will show that πœπ‘‘πœƒ is Hausdorff and first
countable. Further, we derive that (𝑋, π‘‘πœƒ ) is a metrizable topological space.
By (III) of Definition 4, we can choose 𝛿 > 0 such that
πœƒ(𝛿, π‘‘πœƒ (π‘₯, 𝑦)) = π‘Ÿ. Now, if 𝑧 ∈ π΅π‘‘πœƒ (𝑦, 𝛿), then we have
Definition 11. Let 𝑋 be a nonempty set. A mapping π‘‘πœƒ : 𝑋 ×
𝑋 β†’ [0, +∞) is called a πœƒ-metric on 𝑋 with respect to 𝐡action πœƒ ∈ Ξ₯ if π‘‘πœƒ satisfies the following:
It means that 𝑧 ∈ π΅π‘‘πœƒ (π‘₯, π‘Ÿ) and (11) is proved.
(A1) π‘‘πœƒ (π‘₯, 𝑦) = 0 if and only if π‘₯ = 𝑦,
(A2) π‘‘πœƒ (π‘₯, 𝑦) = π‘‘πœƒ (𝑦, π‘₯), for all π‘₯, 𝑦 ∈ 𝑋,
A pair (𝑋, π‘‘πœƒ ) is called a πœƒ-metric space.
Remark 12. If (𝑋, π‘‘πœƒ ) is a πœƒ-metric space, πœƒ(𝑠, 𝑑) = π‘˜(𝑠 + 𝑑),
and π‘˜ ∈ (0, 1], then (𝑋, π‘‘πœƒ ) is a metric space.
Conversely, for πœƒ(𝑠, 𝑑) = π‘˜(𝑠 + 𝑑), π‘˜ ∈ (0, 1), we have that
there exists metric space (𝑋, 𝑑) which is not πœƒ-metric space.
For example, if 𝑋 = {1, 2, 3} and 𝑑 : 𝑋 × π‘‹ β†’ [0, +∞)
defined by
𝑑 (1, 1) = 0,
𝑑 (1, 3) = 1,
𝑑 (2, 2) = 0,
𝑑 (2, 3) = 2,
𝑑 (3, 3) = 0,
Lemma 17. If (𝑋, π‘‘πœƒ ) is a πœƒ-metric space, then the collection
of open sets forms a topology, denoted by πœπ‘‘πœƒ . A pair (𝑋, πœπœƒ ) is
called topological space induced by a πœƒ-metric.
Lemma 18. The set {π΅π‘‘πœƒ (π‘₯, 1/𝑛) : 𝑛 ∈ N} is a local base at π‘₯,
and the above topology is first countable.
(A3) π‘‘πœƒ (π‘₯, 𝑦) ≀ πœƒ(π‘‘πœƒ (π‘₯, 𝑧), π‘‘πœƒ (𝑧, 𝑦)), for all π‘₯, 𝑦, 𝑧 ∈ 𝑋.
𝑑 (1, 2) = 1,
π‘‘πœƒ (𝑧, π‘₯) ≀ πœƒ (π‘‘πœƒ (𝑧, 𝑦) , π‘‘πœƒ (𝑦, π‘₯)) < πœƒ (𝛿, π‘‘πœƒ (𝑦, π‘₯)) = π‘Ÿ.
(12)
1
π‘˜= ,
2
Proof. For each π‘₯ ∈ 𝑋 and π‘Ÿ > 0, we can find 𝑛0 ∈ N such
that 1/𝑛0 < π‘Ÿ. Thus, π΅π‘‘πœƒ (π‘₯, 1/𝑛) βŠ‚ π΅π‘‘πœƒ (π‘₯, π‘Ÿ). This means that
{π΅π‘‘πœƒ (π‘₯, 1/𝑛) : 𝑛 ∈ N} is a local base at π‘₯ and the above topology is first countable.
Theorem 19. A topological space (𝑋, πœπ‘‘πœƒ ) is Hausdorff.
Proof. Let π‘₯, 𝑦 be two distinct points of 𝑋. Suppose that 0 <
𝛼 < π‘‘πœƒ (π‘₯, 𝑦) is arbitrary. By Definition 4, we conclude that
𝛼 ∈ Im(πœƒ). Therefore, there exist π‘Ÿ, 𝑠 > 0 such that πœƒ(π‘Ÿ, 𝑠) = 𝛼.
It is clear that π΅π‘‘πœƒ (π‘₯, π‘Ÿ) ∩ π΅π‘‘πœƒ (π‘₯, 𝑠) = 0. For if there exists 𝑧 ∈
π΅π‘‘πœƒ (π‘₯, π‘Ÿ) ∩ π΅π‘‘πœƒ (π‘₯, 𝑠), then
π‘‘πœƒ (π‘₯, 𝑦) ≀ πœƒ (π‘‘πœƒ (π‘₯, 𝑧) , π‘‘πœƒ (𝑧, 𝑦))
(8)
𝑑 is a metric, but 𝑑 is not a πœƒ metric.
< πœƒ (π‘Ÿ, 𝑠) = 𝛼 < π‘‘πœƒ (π‘₯, 𝑦) ,
a contradiction.
(13)
4
Mathematical Problems in Engineering
Theorem 20. Let (𝑋, π‘‘πœƒ ) be a πœƒ-metric space and πœπ‘‘πœƒ the topology induced by the πœƒ-metric. Then, for a sequence {π‘₯𝑛 } in 𝑋,
π‘₯𝑛 β†’ π‘₯ if and only if π‘‘πœƒ (π‘₯𝑛 , π‘₯) β†’ 0 as 𝑛 β†’ ∞.
Definition 24. Let (𝑋, π‘‘πœƒ ) be a πœƒ-metric space. One says that
(𝑋, π‘‘πœƒ ) is complete πœƒ-metric space if every Cauchy sequence
{π‘₯𝑛 } is convergent in 𝑋.
Proof. Suppose that π‘₯𝑛 β†’ π‘₯. Then, for each πœ– > 0, there
exists 𝑛0 ∈ N such that π‘₯𝑛 ∈ π΅π‘‘πœƒ (π‘₯, πœ–), for all 𝑛 β‰₯ 𝑛0 . Thus,
π‘‘πœƒ (π‘₯𝑛 , π‘₯) < πœ–; that is, π‘‘πœƒ (π‘₯𝑛 , π‘₯) β†’ 0 as 𝑛 β†’ ∞. The converse is verified easily.
Lemma 25 (see [12]). A Hausdorff topological space (𝑋, πœπ‘‘πœƒ )
is metrizable if and only if it admits a compatible uniformity
with a countable base.
Theorem 21. Let (𝑋, π‘‘πœƒ ) be a πœƒ-metric space and π‘₯𝑛 β†’ π‘₯,
𝑦𝑛 β†’ 𝑦.Then,
π‘‘πœƒ (π‘₯𝑛 , 𝑦𝑛 ) 󳨀→ π‘‘πœƒ (π‘₯, 𝑦) .
(14)
Proof. For each 𝑛 ∈ N, there exists 𝐾 > 0 such that, for all
𝑛 β‰₯ 𝐾,
1
π‘‘πœƒ (π‘₯𝑛 , π‘₯) < ,
𝑛
1
π‘‘πœƒ (𝑦𝑛 , 𝑦) < .
𝑛
(15)
Thus, by the continuity of πœƒ with respect to each variable, we
have
π‘‘πœƒ (π‘₯, 𝑦) ≀ πœƒ (π‘‘πœƒ (π‘₯, π‘₯𝑛 ) , πœƒ (π‘‘πœƒ (π‘₯𝑛 , 𝑦𝑛 ) , π‘‘πœƒ (𝑦𝑛 , 𝑦)))
1
1
< πœƒ ( , πœƒ (π‘‘πœƒ (π‘₯𝑛 , 𝑦𝑛 ) , )) .
𝑛
𝑛
(16)
Theorem 26. Let (𝑋, π‘‘πœƒ ) be a πœƒ-metric space. Then, (𝑋, πœπ‘‘πœƒ ) is
a metrizable topological space.
Proof. For each 𝑛 ∈ N, define
1
(19)
}.
𝑛
We will prove that {U𝑛 : 𝑛 ∈ N} is a base for a uniformity U
on 𝑋 whose induced topology coincides with πœπ‘‘πœƒ .
We first note that for each 𝑛 ∈ N,
U𝑛 = {(π‘₯, 𝑦) ∈ 𝑋 × π‘‹ : π‘‘πœƒ (π‘₯, 𝑦) <
{(π‘₯, π‘₯) : π‘₯ ∈ 𝑋} βŠ† U𝑛 ,
U𝑛+1 βŠ† U𝑛 , U𝑛 = Uβˆ’1
𝑛 .
(20)
On the other hand, for each 𝑛 ∈ N, there is, by the continuity
of πœƒ, an π‘š ∈ N such that
1 1
1
(21)
π‘š > 2𝑛,
πœƒ( , ) < .
π‘š π‘š
𝑛
Then, Uπ‘š ∘ Uπ‘š βŠ† U𝑛 : indeed, let (π‘₯, 𝑦) ∈ Uπ‘š and (𝑦, 𝑧) ∈
Uπ‘š . Thus,
Therefore,
1
1
π‘‘πœƒ (π‘₯, 𝑦) ≀ lim πœƒ ( , πœƒ (π‘‘πœƒ (π‘₯𝑛 , 𝑦𝑛 ) , ))
π‘›β†’βˆž
𝑛
𝑛
= πœƒ (0, πœƒ ( lim π‘‘πœƒ (π‘₯𝑛 , 𝑦𝑛 ) , 0))
π‘›β†’βˆž
π‘‘πœƒ (π‘₯, 𝑧) ≀ πœƒ (π‘‘πœƒ (π‘₯, 𝑦) , π‘‘πœƒ (𝑦, 𝑧))
≀ lim π‘‘πœƒ (π‘₯𝑛 , 𝑦𝑛 )
π‘›β†’βˆž
≀ lim πœƒ (π‘‘πœƒ (π‘₯, π‘₯𝑛 ) , πœƒ (π‘‘πœƒ (π‘₯, 𝑦) , π‘‘πœƒ (𝑦𝑛 , 𝑦)))
π‘›β†’βˆž
1
1
≀ lim πœƒ ( , πœƒ (π‘‘πœƒ (π‘₯, 𝑦) , ))
π‘›β†’βˆž
𝑛
𝑛
≀ π‘‘πœƒ (π‘₯, 𝑦) .
(17)
Thus, π‘‘πœƒ (π‘₯𝑛 , 𝑦𝑛 ) β†’ π‘‘πœƒ (π‘₯, 𝑦).
Lemma 22. Let (𝑋, π‘‘πœƒ ) be a πœƒ-metric space. Let {π‘₯𝑛 } be a
sequence in 𝑋 and π‘₯𝑛 β†’ π‘₯. Then, π‘₯ is unique.
Proof. Suppose that π‘₯𝑛 β†’ π‘₯ and π‘₯𝑛 β†’ 𝑦. We show that π‘₯ =
𝑦. For each 𝑛 ∈ N, there exists 𝑁 > 0 such that π‘‘πœƒ (π‘₯𝑛 , π‘₯) <
1/𝑛 and π‘‘πœƒ (π‘₯𝑛 , 𝑦) < 1/𝑛. By the continuity of πœƒ, we have
0 ≀ π‘‘πœƒ (π‘₯, 𝑦) ≀ πœƒ (π‘‘πœƒ (π‘₯𝑛 , π‘₯) , π‘‘πœƒ (π‘₯𝑛 , 𝑦))
1 1
< πœƒ ( , ) 󳨀→ 0,
𝑛 𝑛
In the following theorems we apply the previous lemma
and the concept of uniformity (see [12] for more information)
to prove the metrizability of a topological space (𝑋, πœπ‘‘πœƒ ).
(𝑛 󳨀→ ∞) .
(18)
Hence, we have π‘₯ = 𝑦.
Definition 23. Let (𝑋, π‘‘πœƒ ) be a πœƒ-metric space. Then, for a
sequence {π‘₯𝑛 } in 𝑋, one says that {π‘₯𝑛 } is a Cauchy sequence if
for each πœ– > 0, there exists 𝑁 > 0 such that, for all π‘š β‰₯ 𝑛 β‰₯ 𝑁,
π‘‘πœƒ (π‘₯𝑛 , π‘₯π‘š ) < πœ–.
(22)
1
1 1
, )< .
π‘š π‘š
𝑛
Therefore, (π‘₯, 𝑧) ∈ U𝑛 . Hence, {U𝑛 : 𝑛 ∈ N} is a base for
a uniformity U on 𝑋. Since for each π‘₯ ∈ 𝑋 and each 𝑛 ∈
N, U𝑛 (π‘₯) = {𝑦 ∈ 𝑋 : π‘‘πœƒ (π‘₯, 𝑦) < 1/𝑛}. We deduce from
Lemma 25 that (𝑋, πœπ‘‘πœƒ ) is a metrizable topological space.
< πœƒ(
Let us recall that a metrizable topological space (𝑋, 𝜏) is
said to be completely metrizable if it admits a complete metric
[13].
Theorem 27. Let (𝑋, π‘‘πœƒ ) be a complete πœƒ-metric space. Then,
(𝑋, πœπ‘‘πœƒ ) is completely metrizable.
Proof. It follows from the proof of Theorem 26 that {U𝑛 : 𝑛 ∈
N} is a base for a uniformity U on 𝑋 compatible with πœπ‘‘πœƒ ,
where U𝑛 = {(π‘₯, 𝑦) ∈ 𝑋×𝑋 : π‘‘πœƒ (π‘₯, 𝑦) < 1/𝑛}, for every 𝑛 ∈ N.
Then, there exists a metric 𝑑 on 𝑋 whose induced uniformity
coincides with U. We want to show that the metric 𝑑 is complete. Indeed, given a Cauchy sequence {π‘₯𝑛 } in (𝑋, 𝑑), we will
prove that {π‘₯𝑛 } is a Cauchy sequence in (𝑋, 𝑑). To this end,
fix πœ– > 0. Choose π‘˜ ∈ N such that 1/π‘˜ < πœ–. Then, there exists
𝑛0 ∈ N such that (π‘₯π‘š , π‘₯𝑛 ) ∈ Uπ‘˜ for every 𝑛, π‘š β‰₯ 𝑛0 . Consequently, for each 𝑛, π‘š β‰₯ 𝑛0 , π‘‘πœƒ (π‘₯𝑛 , π‘₯π‘š ) ≀ 1/π‘˜ < πœ–. We
have shown that {π‘₯𝑛 } is a Cauchy sequence in the complete
πœƒ-metric space (𝑋, 𝑑) and so is convergent with respect to
(𝑋, 𝑑). Thus, (𝑋, 𝑑) is a complete metric space.
Mathematical Problems in Engineering
5
3. Two Fixed Point Theorems
which implies that
In this section, we introduce two fixed point theorems in πœƒmetric spaces. First, we introduce the Banach fixed point and
Caristi’s fixed point theorems in such spaces.
3.1. Banach Fixed Point Theorem
Theorem 28. Let (𝑋, π‘‘πœƒ ) be a complete πœƒ-metric space and 𝑓 :
𝑋 β†’ 𝑋 a mapping that satisfies the following:
π‘‘πœƒ (𝑓π‘₯, 𝑓𝑦) ≀ π›Όπ‘‘πœƒ (π‘₯, 𝑦) ,
π‘‘πœƒ (π‘₯𝑛(π‘˜+1)βˆ’1 , π‘₯𝑛(π‘˜)βˆ’1 ) 󳨀→ 1+
Step 3. We will show that {π‘₯𝑛 } is a Cauchy sequence. Let
π‘š, 𝑛 ∈ N with π‘š > 𝑛
π‘‘πœƒ (π‘₯π‘š , π‘₯𝑛 ) = π‘‘πœƒ (𝑓π‘₯π‘šβˆ’1 , 𝑓π‘₯π‘›βˆ’1 )
≀ π›Όπ‘‘πœƒ (𝑓π‘₯π‘šβˆ’2 , 𝑓π‘₯π‘›βˆ’2 )
for each π‘₯, 𝑦 ∈ 𝑋, where 𝛼 ∈ [0, 1). Then, 𝑓 has a unique fixed
point.
Step 1. We claim that π‘‘πœƒ (π‘₯𝑛 , π‘₯𝑛+1 ) β†’ 0. Indeed, we have
π‘‘πœƒ (π‘₯𝑛+1 , π‘₯𝑛 ) ≀ π›Όπ‘‘πœƒ (π‘₯𝑛 , π‘₯π‘›βˆ’1 )
(31)
..
.
≀ 𝛼𝑛 π‘‘πœƒ (𝑓π‘₯π‘šβˆ’π‘› , π‘₯0 ) .
Since {π‘₯𝑛 } is a bounded sequence, therefore,
lim𝑛,π‘š β†’ ∞ π‘‘πœƒ (π‘₯π‘š , π‘₯𝑛 ) = 0; that is, {π‘₯𝑛 } is a Cauchy sequence.
Thus, there exists π‘₯ ∈ 𝑋 such that π‘₯𝑛 β†’ π‘₯. Further, we
derive that
π‘‘πœƒ (π‘₯𝑛+1 , 𝑓π‘₯) = π‘‘πœƒ (𝑓π‘₯𝑛 , 𝑓π‘₯)
≀ 𝛼2 π‘‘πœƒ (π‘₯π‘›βˆ’1 , π‘₯π‘›βˆ’2 )
(24)
..
.
(30)
Since π‘‘πœƒ (π‘₯𝑛(π‘˜+1) , π‘₯𝑛(π‘˜) ) ≀ π›Όπ‘‘πœƒ (π‘₯𝑛(π‘˜+1)βˆ’1 , π‘₯𝑛(π‘˜)βˆ’1 ), we have 1 ≀
𝛼1, a contradiction. Thus, the sequence {π‘₯𝑛 } is bounded.
(23)
Proof. Let π‘₯0 ∈ 𝑋 and π‘₯𝑛+1 = 𝑓π‘₯𝑛 . We divide our proof into
four steps.
as (π‘˜ 󳨀→ +∞) .
≀ π›Όπ‘‘πœƒ (π‘₯𝑛 , π‘₯)) 󳨀→ 0,
(𝑛 󳨀→ ∞) .
(32)
It means that π‘₯𝑛+1 β†’ 𝑓π‘₯; that is, 𝑓π‘₯ = π‘₯.
≀ 𝛼𝑛 π‘‘πœƒ (π‘₯1 , π‘₯0 ) 󳨀→ 0 ,
as (𝑛 󳨀→ ∞) .
Step 4. In the last step, we prove that the π‘₯ is the unique fixed
point of 𝑇. Suppose, on the contrary, that π‘₯, 𝑦 are two distinct
fixed points of 𝑓. So, we get that
Thus, we have π‘‘πœƒ (π‘₯𝑛 , π‘₯𝑛+1 ) β†’ 0.
Step 2. We assert that the sequence {π‘₯𝑛 } is bounded. Suppose,
on the contrary, that {π‘₯𝑛 } is an unbounded sequence. Thus,
there exists subsequence {𝑛(π‘˜)} such that 𝑛(1) = 1 and for
each π‘˜ ∈ N, 𝑛(π‘˜ + 1) is minimal in the sense that the relation
π‘‘πœƒ (π‘₯𝑛(π‘˜+1) , π‘₯𝑛(π‘˜) ) > 1
(25)
π‘‘πœƒ (π‘₯π‘š , π‘₯𝑛(π‘˜) ) ≀ 1
(26)
does not hold and
holds for all π‘š ∈ {𝑛(π‘˜) + 1, 𝑛(π‘˜) + 2, . . . , 𝑛(π‘˜ + 1) βˆ’ 1}. Hence,
by using the triangle inequality, we derive that
1 < π‘‘πœƒ (π‘₯𝑛(π‘˜+1) , π‘₯𝑛(π‘˜) )
≀ πœƒ (π‘‘πœƒ (π‘₯𝑛(π‘˜+1) , π‘₯𝑛(π‘˜+1)βˆ’1 ) , π‘‘πœƒ (π‘₯𝑛(π‘˜+1)βˆ’1 , π‘₯𝑛(π‘˜) ))
(27)
By taking the limit from two sides of (27) and using (II) of
Definition 4, we derive that
as (π‘˜ 󳨀→ +∞) .
(28)
Also, we have
is a contradiction. This completes the proof.
3.2. Caristi-Type Fixed Point Theorem
Definition 29. Suppose that (𝑋, π‘‘πœƒ ) be a complete πœƒ-metric
space and P the class of all maps πœ“ : 𝑋×𝑋 β†’ [0, +∞) which
satisfies the following conditions:
Μ‚ β‹…) is bounded below
(𝐸1 ) there exists π‘₯Μ‚ ∈ 𝑋 such that πœ“(π‘₯,
and lower semicontinuous, and πœ“(β‹…, 𝑦) is upper semicontinuous for each 𝑦 ∈ 𝑋,
(𝐸2 ) πœ“(π‘₯, π‘₯) = 0, for each π‘₯ ∈ 𝑋,
(𝐸3 ) πœƒ(πœ“(π‘₯, 𝑦), πœ“(𝑦, 𝑧)) ≀ πœ“(π‘₯, 𝑧), for each π‘₯, 𝑦, 𝑧 ∈ 𝑋.
≀ π‘‘πœƒ (π‘₯𝑛(π‘˜+1)βˆ’1 , π‘₯𝑛(π‘˜)βˆ’1 )
≀ πœƒ (π‘‘πœƒ (π‘₯𝑛(π‘˜+1)βˆ’1 , π‘₯𝑛(π‘˜) ) , π‘‘πœƒ (π‘₯𝑛(π‘˜) , π‘₯𝑛(π‘˜)βˆ’1 ))
πœ“ (π‘₯, 𝑦) ≀ πœ‚ (πœ“ (π‘₯, 𝑧) , πœ“ (𝑦, 𝑧)) ,
(34)
for each π‘₯, 𝑦, 𝑧 ∈ 𝑋.
Proof. By Lemma 10, we obtain the desired result.
Example 31. Let πœƒ(𝑑, 𝑠) = 𝑑𝑠/(1+𝑑𝑠); thus, Im(πœƒ) = [0, 1). Now,
let πœ™ : 𝑋 β†’ R be a lower bounded, lower semicontinuous
function and
1 < π‘‘πœƒ (π‘₯𝑛(π‘˜+1) , π‘₯𝑛(π‘˜) )
≀ πœƒ (1, π‘‘πœƒ (π‘₯𝑛(π‘˜) , π‘₯𝑛(π‘˜)βˆ’1 )) ,
(33)
Lemma 30. By Definition 29, one has
≀ πœƒ (π‘‘πœƒ (π‘₯𝑛(π‘˜+1) , π‘₯𝑛(π‘˜+1)βˆ’1 , 1)) .
π‘‘πœƒ (π‘₯𝑛(π‘˜+1) , π‘₯𝑛(π‘˜) ) 󳨀→ 1+
π‘‘πœƒ (𝑦, π‘₯) = π‘‘πœƒ (𝑓𝑦, 𝑓π‘₯) ≀ π›Όπ‘‘πœƒ (𝑦, π‘₯)
(29)
π‘’πœ™(𝑦)βˆ’πœ™(π‘₯)
πœ“ (π‘₯, 𝑦) = {
0
π‘₯ =ΜΈ 𝑦
π‘₯ = 𝑦.
Then, πœ“ satisfies all conditions of Definition 29.
(35)
6
Mathematical Problems in Engineering
Example 32. Let πœƒ(𝑑, 𝑠) = βˆšπ‘‘2𝑛+1 + 𝑠2𝑛+1 ; thus, Im(πœƒ) =
[0, +∞). Now, let πœ™ : 𝑋 β†’ R be a lower bounded, lower
semicontinuous function and
2𝑛+1
πœ“ (π‘₯, 𝑦) =
βˆšπœ™ (𝑦) βˆ’ πœ™ (π‘₯).
2𝑛+1
(36)
Then, πœ“ satisfies all conditions of Definition 29. Also, πœ‚(𝑑, 𝑠) =
2𝑛+1 2𝑛+1
βˆšπ‘‘
βˆ’ 𝑠2𝑛+1 , and πœƒ is regular.
From now to end, we assume that πœƒ is regular (see
Definition 8).
Lemma 33. Let (𝑋, π‘‘πœƒ ) be a complete πœƒ-metric space and πœ“ ∈
P. Let 𝛾 : [0, +∞) β†’ [0, +∞) be πœƒ-subadditive; that is,
𝛾(πœƒ(π‘₯, 𝑦)) ≀ πœƒ(𝛾(π‘₯), 𝛾(𝑦)), for each π‘₯, 𝑦 ∈ [0, +∞), nondecreasing continuous map such that π›Ύβˆ’1 {0} = {0}. Define the
order β‰Ί on 𝑋 by
π‘₯ β‰Ί 𝑦 ⇐⇒ 𝛾 (π‘‘πœƒ (π‘₯, 𝑦)) ≀ πœ“ (π‘₯, 𝑦) ,
(37)
for any π‘₯, 𝑦 ∈ 𝑋. Then, (𝑋, β‰Ί) is a partial order set which has
minimal elements.
Proof. At first, we show that (𝑋, β‰Ί) is a partial ordered set. For
each π‘₯ ∈ 𝑋, we have 0 = 𝛾(0) = 𝛾(π‘‘πœƒ (π‘₯, π‘₯)) ≀ πœ“(π‘₯, π‘₯) = 0.
Thus, π‘₯ β‰Ί π‘₯. If π‘₯ β‰Ί 𝑦 and 𝑦 β‰Ί π‘₯, then 𝛾(π‘‘πœƒ (π‘₯, 𝑦)) ≀ πœ“(π‘₯, 𝑦)
and 𝛾(π‘‘πœƒ (π‘₯, 𝑦)) ≀ πœ“(𝑦, π‘₯). Thus, we give
𝛾 (πœƒ (π‘‘πœƒ (π‘₯, 𝑦) , π‘‘πœƒ (π‘₯, 𝑦)) ≀ πœƒ (𝛾 (π‘‘πœƒ (π‘₯, 𝑦)) , 𝛾 (π‘‘πœƒ (π‘₯, 𝑦)))
below. Let {𝛼𝑛 } be an increasing sequence of elements from
Ξ“ such that
Μ‚ π‘₯𝛼𝑛 ) = inf {πœ“ (π‘₯,
Μ‚ π‘₯𝛼 ) : 𝛼 ∈ Ξ“} = 𝜌.
lim πœ“ (π‘₯,
π‘›β†’βˆž
Then, for each π‘š β‰₯ 𝑛, we infer that
𝛾 (π‘‘πœƒ (π‘₯𝛼𝑛 , π‘₯π›Όπ‘š )) ≀ πœ“ (π‘₯𝛼𝑛 , π‘₯π›Όπ‘š )
Μ‚ π‘₯π›Όπ‘š )) .
Μ‚ π‘₯𝛼𝑛 ) , πœ“ (π‘₯,
≀ πœ‚ (πœ“ (π‘₯,
lim sup 𝛾 (π‘‘πœƒ (π‘₯𝛼𝑛 , π‘₯π›Όπ‘š ))
𝑛,π‘š β†’ ∞
≀ πœ“ (π‘₯𝛼𝑛 , π‘₯π›Όπ‘š )
𝑛,π‘š β†’ ∞
≀ πœ‚ (𝜌, 𝜌) = 0.
Then, our assumption on 𝛾 implies that {π‘₯𝛼𝑛 } is a Cauchy
sequence and therefore converges to some π‘₯ ∈ 𝑋. Since 𝛾
is continuous and πœ“(β‹…, π‘₯𝛼𝑛 ) is upper semicontinuous, then we
have
𝛾 (π‘‘πœƒ (π‘₯, π‘₯𝛼𝑛 )) = lim sup 𝛾 (π‘‘πœƒ (π‘₯π›Όπ‘š , π‘₯𝛼𝑛 ))
π‘šβ†’βˆž
π‘šβ†’βˆž
≀ πœ“ (π‘₯, π‘₯) = 0.
≀ πœƒ (πœ“ (π‘₯, 𝑦) , πœ“ (𝑦, 𝑧))
This shows that π‘₯ β‰Ί π‘₯𝛼𝑛 for all 𝑛 β‰₯ 1, which means that π‘₯ is
lower bound for {π‘₯𝛼𝑛 }. In order to see that π‘₯ is also a lower
bound for {π‘₯𝛼 }π›ΌβˆˆΞ“ , let 𝛽 ∈ Ξ“ be such that π‘₯𝛽 β‰Ί π‘₯𝛼𝑛 for all
𝑛 β‰₯ 1. Then, for each 𝑛 ∈ N, we have
0 ≀ 𝛾 (π‘‘πœƒ (π‘₯𝛽 , π‘₯𝛼𝑛 ))
(39)
≀ πœ“ (π‘₯𝛽 , π‘₯𝛼𝑛 )
(45)
Μ‚ π‘₯𝛽 )) .
Μ‚ π‘₯𝛼𝑛 ) , πœ“ (π‘₯,
≀ πœ‚ (πœ“ (π‘₯,
≀ πœ“ (π‘₯, 𝑧) .
It means that π‘₯ β‰Ί 𝑧. Thus, (𝑋, β‰Ί) is a partial ordered set.
To show that (𝑋, β‰Ί) has minimal elements, we show that
any decreasing chain has a lower bound. Indeed, let {π‘₯𝛼 }π›ΌβˆˆΞ“
be a decreasing chain; then we have
Hence, for all 𝑛 β‰₯ 1,
Μ‚ π‘₯𝛽 ) ≀ πœ“ (π‘₯,
Μ‚ π‘₯𝛼𝑛 )
πœ“ (π‘₯,
(46)
which implies that
Μ‚ π‘₯𝛼 ) : 𝛼 ∈ Ξ“}
Μ‚ π‘₯𝛽 ) = inf {πœ“ (π‘₯,
πœ“ (π‘₯,
0 ≀ 𝛾 (π‘‘πœƒ (π‘₯𝛼 , π‘₯𝛽 ))
≀ πœ“ (π‘₯𝛼 , π‘₯𝛽 )
(44)
≀ πœ“ (π‘₯, π‘₯𝛼𝑛 ) .
(38)
≀ πœƒ (𝛾 (π‘‘πœƒ (π‘₯, 𝑦)) , 𝛾 (π‘‘πœƒ (𝑦, 𝑧)))
(43)
Μ‚ π‘₯𝛼𝑛 ) , πœ“ (π‘₯,
Μ‚ π‘₯π›Όπ‘š ))
≀ lim sup πœ‚ (πœ“ (π‘₯,
≀ lim sup πœ“ (π‘₯π›Όπ‘š , π‘₯𝛼𝑛 )
𝛾 (π‘‘πœƒ (π‘₯, 𝑧)) ≀ 𝛾 (πœƒ (π‘‘πœƒ (π‘₯, 𝑦) , π‘‘πœƒ (𝑦, 𝑧))
(42)
By taking limit from two sides of (42), the regularity of πœƒ, and
continuity of πœ‚, we give
≀ πœƒ (πœ“ (π‘₯, 𝑦) , πœ“ (𝑦, π‘₯))
It means that π‘₯ = 𝑦. Finally, if π‘₯ β‰Ί 𝑦 and 𝑦 β‰Ί 𝑧, then
𝛾(π‘‘πœƒ (π‘₯, 𝑦)) ≀ πœ“(π‘₯, 𝑦) and 𝛾(π‘‘πœƒ (𝑦, 𝑧)) ≀ πœ“(𝑦, 𝑧). Thus, we
give
(41)
(40)
Μ‚ π‘₯𝛼 )) ;
Μ‚ π‘₯𝛽 ) , πœ“ (π‘₯,
≀ πœ‚ (πœ“ (π‘₯,
Μ‚ π‘₯𝛼 ) ≀ πœ“(π‘₯,
Μ‚ π‘₯𝛽 ). Thus,
by definition of πœ‚, we have πœ“(π‘₯,
Μ‚ π‘₯𝛼 )}π›ΌβˆˆΞ“ is decreasing net of reals which is bounded
{πœ“(π‘₯,
Μ‚ π‘₯𝛼𝑛 ) .
= lim πœ“ (π‘₯,
(47)
π‘›β†’βˆž
Thus, from (46), we get lim𝑛 β†’ ∞ π‘₯𝛼𝑛 = π‘₯𝛽 , which implies that
π‘₯𝛽 = π‘₯. Therefore, for any 𝛼 ∈ Ξ“, there exists 𝑛 ∈ N such that
π‘₯𝛼𝑛 β‰Ί π‘₯𝛼 ; that is, π‘₯ is a lower bound of {π‘₯𝛼 }. Zorn’s lemma
will therefore imply that (𝑋, β‰Ί) has minimal elements.
Mathematical Problems in Engineering
7
Theorem 34. Let (𝑋, π‘‘πœƒ ) be a complete πœƒ-metric space and πœ“ ∈
P. Let 𝛾 : [0, +∞) β†’ [0, +∞) be as in Lemma 33. Let 𝑇 :
𝑋 β†’ 𝑋 be a map satisfying the following:
𝛾 (π‘‘πœƒ (π‘₯, 𝑇π‘₯)) ≀ πœ“ (𝑇π‘₯, π‘₯) ,
(48)
for any π‘₯ ∈ 𝑋. Then, 𝑇 has a fixed point.
Proof. By Lemma 33, (𝑋, β‰Ί) has a minimal element say π‘₯.
Thus, 𝑇 π‘₯ β‰Ί π‘₯. It means that 𝑇 π‘₯ = π‘₯.
Corollary 35. Let (𝑋, π‘‘πœƒ ) be a complete πœƒ-metric space and
πœ“ ∈ P. Let 𝛾 : [0, +∞) β†’ [0, +∞) be as in Lemma 33. Let 𝑇 :
𝑋 β†’ 2𝑋 be a multivalued mapping satisfying the following:
𝛾 (π‘‘πœƒ (π‘₯, 𝑦)) ≀ πœ“ (𝑦, π‘₯) ,
βˆ€π‘¦ ∈ 𝑇π‘₯.
(49)
Then, 𝑇 has an endpoint; that is, there exists π‘₯ ∈ 𝑋 such that
𝑇 π‘₯ = {π‘₯}.
In Corollary 35, we can introduce many types of Caristi’s
fixed point theorem as follows.
If we set πœ“ as in Example 32, then (48) has the following
form:
𝛾 (π‘‘πœƒ (π‘₯, 𝑇π‘₯)) ≀
βˆšπœ™ (𝑇π‘₯) βˆ’ πœ™ (π‘₯).
2𝑛+1
(50)
References
[1] S. Banach, β€œSur les opérations dans les ensembles abstraits et
leur application aux équations intégrales,” Fundamenta Mathematicae, vol. 3, pp. 133–181, 1922.
[2] I. A. Rus, Generalized Contractions and Applications, Cluj
University Press, Cluj-Napoca, Romania, 2001.
[3] I. A. Rus, A. PetrusΜ§el, and G. PetrusΜ§el, Fixed Point Theory, Cluj
University Press, Cluj-Napoca, Romania, 2008.
[4] J. Caristi, β€œFixed point theorems for mappings satisfying
inwardness conditions,” Transactions of the American Mathematical Society, vol. 215, pp. 241–251, 1976.
[5] T. Abdeljawad and E. Karapinar, β€œQuasicone metric spaces and
generalizations of Caristi Kirk’s theorem,” Fixed Point Theory
and Applications, vol. 2009, Article ID 574387, 9 pages, 2009.
[6] A. Amini-Harandi, β€œSome generalizations of Caristi’s fixed
point theorem with applications to the fixed point theory
of weakly contractive set-valued maps and the minimization
problem,” Nonlinear Analysis: Theory, Methods & Applications,
vol. 72, no. 12, pp. 4661–4665, 2010.
[7] E. Karapinar, β€œGeneralizations of Caristi Kirk’s theorem on
partial metric spaces,” Fixed Point Theory and Applications, vol.
2011, article 4, 2011.
[8] R. P. Agarwal and M. A. Khamsi, β€œExtension of Caristi’s
fixed point theorem to vector valued metric spaces,” Nonlinear
Analysis: Theory, Methods & Applications, vol. 74, no. 1, pp. 141–
145, 2011.
[9] I. Kramosil and J. Michálek, β€œFuzzy metrics and statistical
metric spaces,” Kybernetika, vol. 11, no. 5, pp. 336–344, 1975.
[10] M. Grabiec, β€œFixed points in fuzzy metric spaces,” Fuzzy Sets
and Systems, vol. 27, no. 3, pp. 385–389, 1988.
[11] A. George and P. Veeramani, β€œOn some results in fuzzy metric
spaces,” Fuzzy Sets and Systems, vol. 64, no. 3, pp. 395–399, 1994.
[12] J. L. Kelley, General Topology, D. Van Nostrand, New York, NY,
USA, 1955.
[13] R. Engelking, General Topology, PWNβ€”Polish Scientific Publishers, Warsaw, Poland, 1977.
Advances in
Decision
Sciences
Advances in
Mathematical Physics
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2013
The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2013
International Journal of
Mathematical Problems
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2013
Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2013
Volume 2013
Abstract and
Applied Analysis
Journal of
Applied Mathematics
Hindawi Publishing Corporation
http://www.hindawi.com
Hindawi Publishing Corporation
http://www.hindawi.com
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2013
Volume 2013
Discrete Dynamics
in Nature and Society
Submit your manuscripts at
http://www.hindawi.com
Journal of Function Spaces
and Applications
Hindawi Publishing Corporation
http://www.hindawi.com
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2013
International
Journal of
Mathematics and
Mathematical
Sciences
Advances in
Volume 2013
Journal of
Operations
Research
Probability
and
Statistics
International Journal of
Differential
Equations
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2013
ISRN
Mathematical
Analysis
Hindawi Publishing Corporation
http://www.hindawi.com
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2013
ISRN
Discrete
Mathematics
Volume 2013
Hindawi Publishing Corporation
http://www.hindawi.com
Hindawi Publishing Corporation
http://www.hindawi.com
International Journal of
Stochastic Analysis
Volume 2013
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2013
ISRN
Applied
Mathematics
ISRN
Algebra
Volume 2013
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2013
Hindawi Publishing Corporation
http://www.hindawi.com
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2013
ISRN
Geometry
Volume 2013
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2013