1 APPENDIX S1 1 2 Result 1 Suppose that Y1 ,, Yr is a random sample of size r from a distribution 3 Geometric P 1 (1 p) . Let h( x) 4 P k k 2 and let Tr r Y i 1 i r . Then for 2k 2k 1 r h(Tr ) h P 5 6 1 1 / x 2 / k 1 1 / x 2 2 d N (0,1) 1 h r2 P that is, 1 1 Tr h(Tr ) 7 8 1 P 1 where , h rP 2 P 9 Proof 2 r 2 / k 1 k2 1 P 2 / k 1 P 2 k2 1 Tr 2 2 ~ N h 1 , h 1 2 r P P P3 2 k 1 1 1 P P 1. and h 2 / k 1 2 P k 1 P P 2k 2 (1 / k 1) 1 1 / x 2 / k 1 1 / x 2 10 1 P 1 Note that Tr ~ N , r2 . Then, since r2 0 if r , h( x) 2 P rP 11 1 1 1 P P3 2 k P 1 0 is differentiable with respect to x (0,1) and h 2 / k 1 2 P k 1 P P 2k k2 2 (1 / k 1) 12 13 14 1 1 2 2 2k for P , then using the delta method we get, h(Tr ) ~ N h , h' r . 2k P P 2 15 Result 2 Suppose that Y1 ,, Yr is a random sample of size r from a distribution 16 Geometric P 1 (1 p) k . Let h( x) 17 the smallest integer value rm such that P 2Z1 / 2 18 1 1 / x 2 / k 1 1 / x 2 k 2 1 Pˆ Pˆ 2 / k 1 2 rm k 2 1 and let Pˆ Tr 1 i1Yi / r is approximately 20 rm 21 Proof 22 1 1 2 2 1 P From Result 1 we have that h(Tr ) ~ N h , h' r where r2m , rm P 2 P P 23 1 h P 24 quantile of the standard normal distribution. Therefore, 25 1 P k 2 P 2 1 P 2 / k 1 P 2 k P 2 Z1 / 2 2 1 P 2 / k 1 k2 P 2 1 (1 P) P 2k 1 P Z P 1 2 Z1 / 2 k 1 P 2 / k 1 P 2 2k P Z1 / 2 2 (1 / k 1) 2 P3 1 1 1 P and h P k 1 P 2 / k 1 P 2 2 (1 / k 1) 1 Pˆ Pˆ 2 / k 1 rm k 2 2 . Then, 19 2 / k 1 r P 2 3 2k 2k P 1 for P . Let Z the 2k 2k 1 h 2 Z1 / 2 P 2 2 1 (1 P ) 1 (1 P ) h' h' 2 2 P rm P P rm P 1 1 h h Pˆ P rm 3 rm 1 h 2 Z1 / 2 P P Z 2 1 (1 P ) h' 2 P rm P 26 27 2Z1 / 2 28 2 1 (1 P ) h' 2 P rm P 2 that Eq. 30 x rm , a 31 x (1.S1) Z 1 (1 P) 0 h' 2 P P 2Z1 / 2 Note 33 2 Z1 / 2 1 h P 1 1 (1 P) rm h rm Z h 0 P2 P P 29 32 1 rm h rm Z P rm has a quadratic (1.S1) form ax 2 bx c 0 , with 1 1 (1 P) , with two solutions given by , b h , and c Z h 2Z1 / 2 P2 P P b b 2 4ac b b 2 4ac . Taking x for fixed , the desired rm is given by 2a 2a 2 1 h h 1 2 Z h 1 1 P 2 P Z1 / 2 P P P rm Z1 / 2 we obtain the result and Eq. 9. 2 1 1 , in which after replace h and h P P
© Copyright 2026 Paperzz