Basis risk with partial information Two-dimensional Kalman filter Indifference hedging with random drifts Optimal hedging under partial information Michael Monoyios Mathematical Institute University of Oxford www.maths.ox.ac.uk/~monoyios Further Developments in Quantitative Finance ICMS, Edinburgh July 2007 Michael Monoyios Optimal hedging under partial information Mathematical Institute University of Oxford www.maths.ox.ac.uk/~monoyios Basis risk with partial information Two-dimensional Kalman filter Indifference hedging with random drifts 1 Basis risk with partial information 2 Two-dimensional Kalman filter 3 Indifference hedging with random drifts Michael Monoyios Optimal hedging under partial information Mathematical Institute University of Oxford www.maths.ox.ac.uk/~monoyios Basis risk with partial information Two-dimensional Kalman filter Indifference hedging with random drifts Model (Ω, F, F := (Ft )0≤t≤T , P), and Ft = σ((Bs , Bs⊥ ); 0 ≤ s ≤ t) S := (St )0≤t≤T traded dSt = rSt dt + σSt (λdt + dBt ) =: rSt dt + σSt dξt Y := (Yt )0≤t≤T non-traded dYt = rYt dt + βYt (θdt + dWt ) =: rYt dt + βYt dζt Correlation ρ d[B, W ]t = ρdt, W = ρB + p 1 − ρ2 B ⊥ , ρ ∈ [−1, 1] European claim pays h(YT ) Michael Monoyios Optimal hedging under partial information Mathematical Institute University of Oxford www.maths.ox.ac.uk/~monoyios Basis risk with partial information Two-dimensional Kalman filter Indifference hedging with random drifts Perfect correlation case For ρ = 1, perfect hedging possible No arbitrage requires θ = λ (c) Position in n claims hedged by ∆t (c) ∆t v (t, y ) units of S at t ∈ [0, T ] β Yt ∂v (t, Yt ) σ St ∂y = BS(t, y ; β) = −n Perfect hedge does not require knowledge of λ, θ Michael Monoyios Optimal hedging under partial information Mathematical Institute University of Oxford www.maths.ox.ac.uk/~monoyios Basis risk with partial information Two-dimensional Kalman filter Indifference hedging with random drifts Incomplete market case (ρ 6= 1) Utility-based hedge, for U(x) = −e −αx , computable in analytic form Position in n claims hedged by ∆t units of S at t ∈ [0, T ] ∆t p(t, y ) = −nρ = − β Yt ∂p (t, Yt ) σ St ∂y M e −r (T −t) log E Q exp −α(1 − ρ2 )nh(YT ) Yt = y 2 α(1 − ρ )n Under Q M dYt = rYt dt + βYt (θ − ρλ)dt + dWtM Exponential hedge requires knowledge of λ, θ Superior to BS hedge if drifts known (Monoyios, 2004) Michael Monoyios Optimal hedging under partial information Mathematical Institute University of Oxford www.maths.ox.ac.uk/~monoyios Basis risk with partial information Two-dimensional Kalman filter Indifference hedging with random drifts Drift estimation impossible Observe S over [0, t] and estimate λ Z 1 t d(e −rs Ss ) Bt λ̄(t) = =λ+ ∼ N(λ, 1/t) t 0 σSs t √ (λ̄(t) − λ)/(1/ t) ∼ N(0, 1), and 95% confidence interval for λ is 1.96 1.96 [λ̄min (t), λ̄max (t)] = λ̄(t) − √ , λ̄(t) + √ t t Suppose true λ = 1. To be 95% sure of λ to within 5% of true value (|λ̄(t) − λ| ≤ 0.05) requires λ̄max (t) − λ̄min (t) = 0.1 ⇒ t ≈ 1537years Drift mis-estimation ruins indifference hedging (Monoyios, 2007) Can Bayesian learning help? Michael Monoyios Optimal hedging under partial information Mathematical Institute University of Oxford www.maths.ox.ac.uk/~monoyios Basis risk with partial information Two-dimensional Kalman filter Indifference hedging with random drifts Partial information Require strategies to be adapted to observation filtration generated by asset returns Incorporate learning via filtering Use prior distribution for (λ, θ), now considered as random variables Suppose (λ, θ) is bivariate normal λ ∼ N(λ0 , v0 ), √ θ ∼ N(θ0 , γ0 ), cov(λ, θ) = κ0 = ρ v0 γ0 Infer prior by observing S and Y over [−τ, 0] Filter (update) estimates of λ, θ from subsequent observations of ξt := 1 σ Z 0 t d(e −rs Ss ) = λt + Bt , Ss ζt := 1 β Z 0 t d(e −rs Ys ) = θt + Wt Ys over hedging interval [0, T ] Michael Monoyios Optimal hedging under partial information Mathematical Institute University of Oxford www.maths.ox.ac.uk/~monoyios Basis risk with partial information Two-dimensional Kalman filter Indifference hedging with random drifts Observation and signal Observation filtration F̂ := (F̂t )0≤t≤T , F̂t = σ(ξs , ζs ; 0 ≤ s ≤ t) Observation process O, (unobservable) signal process U ξt λ , U= O := θ ζt 0≤t≤T Observation and signal SDEs dOt = Udt + DdMt , 1 p 0 D= , 1 − ρ2 ρ Michael Monoyios Optimal hedging under partial information 0 dU = 0 dBt Mt = dBt⊥ Mathematical Institute University of Oxford www.maths.ox.ac.uk/~monoyios Basis risk with partial information Two-dimensional Kalman filter Indifference hedging with random drifts Kalman-Bucy equations Optimal filter Ût := E [U|F̂t ], 0 ≤ t ≤ T E [λ|F̂t ] λ̂t Ût := =: , θ̂t E [θ|F̂t ] λ̂0 θ̂0 satisfies Kalman-Bucy filtering equation −1 (dOt − Ût dt) d Ût = Vt DD T = λ0 θ0 =: Vt dNt (Nt )0≤t≤T is innovations process Z t Nt := Ot − Ûs ds 0 Rt ξt − 0 λ̂s ds B̂t Rt = =: Ŵ ζt − 0 θ̂s ds t and B̂, Ŵ are F̂-BMs with correlation ρ Michael Monoyios Optimal hedging under partial information Mathematical Institute University of Oxford www.maths.ox.ac.uk/~monoyios Basis risk with partial information Two-dimensional Kalman filter Indifference hedging with random drifts Riccati and Lyapunov equations Conditional variance-covariance matrix i h Vt := E (U − Ût )(U − Ût )T F̂t satisfies deterministic matrix Riccati equation −1 dVt = −Vt DD T Vt dt Equivalently, Rt := Vt−1 satisfies Lyapunov equation −1 dRt = DD T dt Michael Monoyios Optimal hedging under partial information Mathematical Institute University of Oxford www.maths.ox.ac.uk/~monoyios Basis risk with partial information Two-dimensional Kalman filter Indifference hedging with random drifts Expanded covariance matrix Written in full, conditional covariance is E [(λ − λ̂t )2 |F̂t ] E [(λ − λ̂t )(θ − θ̂t )|F̂t ] = E [(λ − λ̂t )(θ − θ̂t )|F̂t ] E [(θ − θ̂t )2 |F̂t ] vt κt =: κt γt Vt Michael Monoyios Optimal hedging under partial information Mathematical Institute University of Oxford www.maths.ox.ac.uk/~monoyios Basis risk with partial information Two-dimensional Kalman filter Indifference hedging with random drifts Expanded filtering equation Equation for optimal filter is d λ̂t d θ̂t Michael Monoyios Optimal hedging under partial information = 1 1 − ρ2 vt − ρκt κt − ργt 1 1 − ρ2 = vt − ρκt κt − ργt dξt − λ̂t dt dζt − θ̂t dt d B̂t κt − ρvt γt − ρκt d Ŵt κt − ρvt γt − ρκt Mathematical Institute University of Oxford www.maths.ox.ac.uk/~monoyios Basis risk with partial information Two-dimensional Kalman filter Indifference hedging with random drifts Solution of Lyapunov equation Lyapunov equation is d dt γt vt γt −κ2t t − vt γκt −κ 2 t t − vt γκt −κ 2 vt vt γt −κ2t t ! 1 = 1 − ρ2 1 −ρ −ρ 1 Obtiain 3 equations for γt , κt , vt γt γ0 − 2 vt γt − κt v0 γ0 − κ20 κt κ0 − vt γt − κ2t v0 γ0 − κ20 v0 vt − 2 vt γt − κt v0 γ0 − κ20 Michael Monoyios Optimal hedging under partial information = = = t 1 − ρ2 ρt 1 − ρ2 t 1 − ρ2 Mathematical Institute University of Oxford www.maths.ox.ac.uk/~monoyios Basis risk with partial information Two-dimensional Kalman filter Indifference hedging with random drifts Simplification Assume γ0 = v0 Corresponds to having past observations over same time interval [−τ, 0] for both S and Y Then κ0 = ρv0 , and we obtain vt = Michael Monoyios Optimal hedging under partial information v0 , 1 + v0 t γt = vt , κt = ρvt Mathematical Institute University of Oxford www.maths.ox.ac.uk/~monoyios Basis risk with partial information Two-dimensional Kalman filter Indifference hedging with random drifts Solution of filtering problem Equation for optimal filter simplifies to so Michael Monoyios Optimal hedging under partial information d λ̂t d θ̂t = vt dξt − λ̂t dt dζt − θ̂t dt = vt d B̂t d Ŵt Z t λ̂t d B̂s λ0 = + vs θ0 θ̂t d Ŵs 0 Mathematical Institute University of Oxford www.maths.ox.ac.uk/~monoyios Basis risk with partial information Two-dimensional Kalman filter Indifference hedging with random drifts Equivalently λ̂(t, ξt ) λ̂(t, St ) λ̂t ≡ ≡ θ̂t θ̂(t, ζt ) θ̂(t, Yt ) given by λ̂t = λ0 + v0 ξt , 1 + v0 t θ̂t = θ0 + v0 ζt 1 + v0 t ζt = 1 log β with ξt = 1 log σ Michael Monoyios Optimal hedging under partial information e −rt St S0 1 + σt, 2 e −rt Yt Y0 1 + βt 2 Mathematical Institute University of Oxford www.maths.ox.ac.uk/~monoyios Basis risk with partial information Two-dimensional Kalman filter Indifference hedging with random drifts Effective full information model Asset price SDEs under F̂ become dSt = rSt dt + σSt dξt dYt = rYt dt + βYt dζt = rSt dt + σSt (λ̂t dt + d B̂t ) = rYt dt + βYt (θ̂t dt + d Ŵt ) Full information model with random drift parameters (λ̂t , θ̂t ) Same result obtained by treating filtering of λ and θ as two one-dimensional Kalman filters with same prior variance Correlated asset Y gives no additional information about drift of S (and vice versa) under continuous observation unless past observations of S, Y are over different time intervals Michael Monoyios Optimal hedging under partial information Mathematical Institute University of Oxford www.maths.ox.ac.uk/~monoyios Basis risk with partial information Two-dimensional Kalman filter Indifference hedging with random drifts Portfolio and wealth processes Trading strategy π := (πt )0≤t≤T , F̂-adapted, Wealth process X π ≡ X := (Xt )0≤t≤T RT 0 πt2 dt < ∞ a.s. dXt = rXt dt + σπt (λ̂t dt + d B̂t ) U(x) = − exp(−αx), x ∈ R, α > 0 Primal value function u ≡ u (n) u(t, x, s, y ) = E [U(XT + nh(YT ))|Xt = x, St = s, Yt = y ] May be expressed as u(t, x, y ; λ̂t , θ̂t ) Optimal strategy π ∗ ≡ π ∗,n Optimal wealth process by X ∗ ≡ X ∗,n Random endowment nh(YT ) is bounded below Michael Monoyios Optimal hedging under partial information Mathematical Institute University of Oxford www.maths.ox.ac.uk/~monoyios Basis risk with partial information Two-dimensional Kalman filter Indifference hedging with random drifts Indifference price and hedge Indifference price per claim at t ∈ [0, T ], given Xt = x, St = s, Yt = y , is p ≡ p (n) given by u (n) (t, x − np (n) (t, x, s, y ), s, y ) = u (0) (t, x, s) Optimal hedging strategy π H := πtH 0≤t≤T (H) πt Michael Monoyios Optimal hedging under partial information := πt∗,n − πt∗,0 , 0 ≤ t ≤ T Mathematical Institute University of Oxford www.maths.ox.ac.uk/~monoyios Basis risk with partial information Two-dimensional Kalman filter Indifference hedging with random drifts Problem without claim, n = 0 Dual value function for n = 0, v (t, η) ≡ v (t, η; λ̂t ) " ! # Z̃T v (t, η) = E V η F̂t Z̃t where Z̃t = e −rt Zt , Zt = E(−λ̂ · B̂)t This gives h i η v (t, η) = e −r (T −t) V (η) + −r (T − t) + H (0) (t, λ̂t ) α where H (0) (t, λ̂t ) = E ZT log Zt ZT F̂t Zt is entropic term Michael Monoyios Optimal hedging under partial information Mathematical Institute University of Oxford www.maths.ox.ac.uk/~monoyios Basis risk with partial information Two-dimensional Kalman filter Indifference hedging with random drifts Entropy computation Apply Itô to Zt =: g (t, λ̂t ) and use dZt = −λ̂t Zt d B̂t , to obtain ZT = Zt vt vT 1/2 d λ̂t = vt d B̂t , " 1 exp − 2 λ̂2T λ̂2 − t vT vt !# Conditional on F̂t , λ̂T ∼ N(λ̂t , vt vT (T − t)), so " # 1 vt λ̂2t (0) H (t, λ̂t ) = log − vT (T − t) + 2 vT vt Michael Monoyios Optimal hedging under partial information Mathematical Institute University of Oxford www.maths.ox.ac.uk/~monoyios Basis risk with partial information Two-dimensional Kalman filter Indifference hedging with random drifts Primal value function for n = 0 Recover u(t, x) ≡ u(t, x; λ̂t ) from bidual relation u(t, x) = inf [v (t, η) + xη] η>0 so for n = 0, u ≡ u (0) given by n o u(t, x; λ̂t ) = − exp −αxe r (T −t) − H (0) (t, λ̂t ) Recall λ̂t ≡ λ̂(t, St ) so, conditional on St = s, u(t, x; λ̂t ) ≡ u(t, x, s) Michael Monoyios Optimal hedging under partial information Mathematical Institute University of Oxford www.maths.ox.ac.uk/~monoyios Basis risk with partial information Two-dimensional Kalman filter Indifference hedging with random drifts Optimal trading strategy (n = 0) Given X0 = x, and writing u(x) ≡ u(0, x) U 0 (XT∗ ) = ηe −rT ZT , η = u 0 (x) Combine with Q-martingale property of (e −rt Xt∗ )0≤t≤T , and dQ/dP = ZT , ZT ∗ ∗ −r (T −t) Xt = e E X F̂t Zt T e −r (T −t) (0) H (0, λ0 ) − H (0) (t, λ̂t ) − log Zt = xe rt + α Compute dXt∗ via Itô, recall dXt∗ = rXt∗ dt + σπt∗ (λ̂t dt + d B̂t ): πt∗ = e −r (T −t) Michael Monoyios Optimal hedging under partial information λ̂t vT σα vt Mathematical Institute University of Oxford www.maths.ox.ac.uk/~monoyios Basis risk with partial information Two-dimensional Kalman filter Indifference hedging with random drifts Problem with claim, n 6= 0 Dual value function now v (t, η, y ) ≡ v (t, η, y ; λ̂t , θ̂t ) ≡ v (t, η, s, y ) # " ! Z̃TQ Z̃TQ v (t, η, y ) = inf E V η Q + η Q F̂t Q∈M Z̃t Z̃t where now Z̃tQ = e −rt ZtQ and dQ = E(−λ̂ · B̂ − ψ · B̂ ⊥ )t ZtQ = dP F̂t p and under Q ∈ M, with := 1 − ρ2 , dSt dYt d λ̂t d θ̂t Michael Monoyios Optimal hedging under partial information = = = = rSt dt + σSt d B̂tQ rYt dt + βYt [(θ̂t − ρλ̂t − ψt )dt + d ŴtQ ] vt [−λ̂t dt + d B̂tQ ] vt [−(ρλ̂t + ψt )dt + d ŴtQ ] Mathematical Institute University of Oxford www.maths.ox.ac.uk/~monoyios Basis risk with partial information Two-dimensional Kalman filter Indifference hedging with random drifts Dual value function, n 6= 0 This gives i h η v (t, η, y ) = e −r (T −t) V (η) + −r (T − t) + H (n) (t, y ; λ̂t , θ̂t ) α where " H (n) (t, y ; λ̂t , θ̂t ) = inf E Q log Q∈M ZTQ ZtQ ! # + αnh(YT ) F̂t is entropic term Michael Monoyios Optimal hedging under partial information Mathematical Institute University of Oxford www.maths.ox.ac.uk/~monoyios Basis risk with partial information Two-dimensional Kalman filter Indifference hedging with random drifts Entropic term H (n) decomposes according to " H (n) (t, y ; λ̂t , θ̂t ) = EQ = H (0) 1 2 Z t T # λ̂2u du F̂t + C (t, y ; λ̂t , θ̂t ) (t, λ̂t ) + C (t, y ; λ̂t , θ̂t ) where C (t, y ; λ̂t , θ̂t ) ≡ C (t, s, y ) is value function of stochastic control problem " Z # 1 T 2 Q C (t, s, y ) := inf E ψu du + αnh(YT ) St = s, Yt = y ψ 2 t Michael Monoyios Optimal hedging under partial information Mathematical Institute University of Oxford www.maths.ox.ac.uk/~monoyios Basis risk with partial information Two-dimensional Kalman filter Indifference hedging with random drifts HJB equation and optimal control HJB equation for C (t, s, y ) is 1 2 M Ct + AS,Y C + min ψ − βψyCy = 0 ψ 2 C (T , s, y ) = αnh(y ) where AM S,Y is generator of (S, Y ) under minimal measure 1 2 2 1 s AM S,Y C = rsCs + s Css +(r +β(θ̂ −ρλ̂))yCy + β y Cyy +ρσβsyCsy 2 2 Optimal control is ψt∗ ≡ ψ ∗ (t, St , Yt ) where ψ ∗ (t, s, y ) = βyCy (t, s, y ) so HJB equation is semi-linear PDE 1 2 2 2 2 Ct + AM S,Y C − (1 − ρ )β y Cy = 0 2 Michael Monoyios Optimal hedging under partial information Mathematical Institute University of Oxford www.maths.ox.ac.uk/~monoyios Basis risk with partial information Two-dimensional Kalman filter Indifference hedging with random drifts Primal value function and indifference price Primal value function recovered via bidual relation n o u(t, x, s, y ) = − exp −αxe r (T −t) − H (0) (t, s) − C (t, s, y ) Indifference price p ≡ p (n) p (n) (t, s, y ) = e −r (T −t) C (t, s, y ) αn satisfies 1 2 r (T −t) 2 2 2 pt + AM β y py = 0, p(T , s, y ) = h(y ) S,Y p − rp − αn(1 − ρ )e 2 Michael Monoyios Optimal hedging under partial information Mathematical Institute University of Oxford www.maths.ox.ac.uk/~monoyios Basis risk with partial information Two-dimensional Kalman filter Indifference hedging with random drifts Optimal hedge HJB equation for primal value function gives π ∗ in terms of derivatives of C (t, s, y ) Optimal hedge (∆H t )0≤t≤T follows as β Yt (n) (n) ∆H = −n p (t, S , Y ) + ρ p (t, S , Y ) t t t t t s σ St y Michael Monoyios Optimal hedging under partial information Mathematical Institute University of Oxford www.maths.ox.ac.uk/~monoyios Basis risk with partial information Two-dimensional Kalman filter Indifference hedging with random drifts Residual risk Trade n claims at time 0 for p (n) (0, Y0 , S0 ) per claim and hedge with strategy (∆H t )0≤t≤T Overall position worth L = (Lt )0≤t≤T given by Lt = XtH + np (n) (t, St , Yt ), L0 = 0 Itô and PDE satisfied by p ≡ p (n) gives dLt h = rLt dt + n β θ̂t − ρλ̂t − (θ − ρλ) Yt py (t, St , Yt ) 1 αn(1 − ρ2 )e r (T −t) β 2 Yt2 (py )2 (t, St Yt ) dt + 2 p + n 1 − ρ2 βYt py (t, St Yt )dBt⊥ Michael Monoyios Optimal hedging under partial information Mathematical Institute University of Oxford www.maths.ox.ac.uk/~monoyios Basis risk with partial information Two-dimensional Kalman filter Indifference hedging with random drifts Approximation for indifference price Indifference price given St = s, Yt = y " Z # e −r (T −t) 1 T 2 Q inf E ψu du + αnh(YT ) St = s, Yt = y p(t, s, y ) = ψ αn 2 t dSt dYt d λ̂t d θ̂t = = = = rSt dt + σSt d B̂tQ rYt dt + βYt [(θ̂t − ρλ̂t − ψt )dt + d ŴtQ ] vt [−λ̂t dt + d B̂tQ ] vt [−(ρλ̂t + ψt )dt + d ŴtQ ] For small approximate optimal control by ψ = 0, so trade claim at marginal price p̂(0, S0 , Y0 ) where p̂(t, s, y ) = e −r (T −t) E M [h(YT )|St = s, Yt = y ] Michael Monoyios Optimal hedging under partial information Mathematical Institute University of Oxford www.maths.ox.ac.uk/~monoyios Basis risk with partial information Two-dimensional Kalman filter Indifference hedging with random drifts Distribution of YT under Q M Marginal price p̂ computable in analytic form Under Q M , conditional on St = s, Yt = y , log YT is Gaussian ∼ N(m(t, s, y )(T − t), Σ2 (t)(T − t)) 1 m(t, s, y ) = log y + r + β(θ̂t − ρλ̂t − β) 2 2 2 2 Σ = β (1 + (1 − ρ )vt (T − t)) log YT Allows fast simulation of L, which now satisfies dLt = rLt dt + nβ θ̂t − ρλ̂t − (θ − ρλ) Yt py (t, St , Yt )dt p + n 1 − ρ2 βYt py (t, St Yt )dBt⊥ Michael Monoyios Optimal hedging under partial information Mathematical Institute University of Oxford www.maths.ox.ac.uk/~monoyios Basis risk with partial information Two-dimensional Kalman filter Indifference hedging with random drifts How effective is optimal hedge with learning? Compare terminal residual risk with that from using by BS-style hedge, given by dLBS t = rLBS t dt + nβYt (θ − λ)vy (t, Yt )dt p + nβYt vy (t, Yt )[(ρ − 1)dBt + 1 − ρ2 dBt⊥ ] For each simulation, obtain λ0 , θ0 as point estimates of λ, θ over past data (use [−τ, 0], so v0 = 1/τ ), then update using filtering results Michael Monoyios Optimal hedging under partial information Mathematical Institute University of Oxford www.maths.ox.ac.uk/~monoyios Basis risk with partial information Two-dimensional Kalman filter Indifference hedging with random drifts Typical result over 10,000 paths, short put λ = 0.25, θ = 0.4, ρ = 0.95, K = 100 hS0 i = 82.9, hY0 i = 87.2 hp̂i = 16.0, hBSi = 17.2 Hedging Error Distributions 2000 Optimal Hedge mean error = −0.53 Frequency 1500 sd error = 5.67 median error = 0.08 1000 500 0 −40 −30 −20 −10 0 Terminal Hedge Error 10 2000 Frequency 30 Naive Hedge mean error = 1.72 1500 20 sd error = 4.16 median error = 1.24 1000 500 0 −40 Michael Monoyios Optimal hedging under partial information −30 −20 −10 0 Terminal Hedge Error 10 20 30 Mathematical Institute University of Oxford www.maths.ox.ac.uk/~monoyios Basis risk with partial information Two-dimensional Kalman filter Indifference hedging with random drifts λ = 0.25, θ = 0.4, ρ = 0.6, K = 100 hS0 i = 82.8, hY0 i = 87.1 hp̂i = 18.0, hBSi = 17.2 Hedging Error Distributions 2500 Optimal Hedge mean error = −2.86 Frequency 2000 1500 sd error = 13.05 median error = 0.62 1000 500 0 −80 −60 −40 −20 0 Terminal Hedge Error 20 2500 2000 40 60 Naive Hedge mean error = 1.68 Frequency sd error = 11.59 1500 median error = 1.64 1000 500 0 −80 Michael Monoyios Optimal hedging under partial information −60 −40 −20 0 Terminal Hedge Error 20 40 60 Mathematical Institute University of Oxford www.maths.ox.ac.uk/~monoyios Basis risk with partial information Two-dimensional Kalman filter Indifference hedging with random drifts λ = 0.39, θ = 0.4, ρ = 0.75, K = 100 hS0 i = 84.3, hY0 i = 85.1 hp̂i = 16.9, hBSi = 15.9 Hedging Error Distributions 2500 2000 Optimal Hedge mean error = −1.76 sd error = 9.89 Frequency median error = 0.29 1500 1000 500 0 −50 2500 Frequency 2000 −40 −30 −20 −10 0 Terminal Hedge Error 10 20 mean error = 0.04 30 40 Naive Hedge sd error = 8.07 median error = 0.33 1500 1000 500 0 −50 Michael Monoyios Optimal hedging under partial information −40 −30 −20 −10 0 Terminal Hedge Error 10 20 30 40 Mathematical Institute University of Oxford www.maths.ox.ac.uk/~monoyios Basis risk with partial information Two-dimensional Kalman filter Indifference hedging with random drifts Conclusions BS-style hedging robust Filtering and learning not sufficient to handle parameter uncertainty in utility-based hedge Exact numerical results seem unlikely to alter conclusion Michael Monoyios Optimal hedging under partial information Mathematical Institute University of Oxford www.maths.ox.ac.uk/~monoyios
© Copyright 2026 Paperzz