1 SUPPORTING INFORMATION 2 3 Identification of limiting climatic and geographical variables for the 4 distribution of the tortoise Chelonoidis chilensis (Testudinidae) 5 6 7 Authors: Alejandro Ruete1*, Gerardo C. Leynaud2 8 1 9 Appendix S1. Bayesian spatially expanded logistic (BSEL) model and model 10 selection procedure 11 We developed a Bayesian spatially expanded logistic (BSEL) model (Casetti 1997; 12 Congdon 2003) to obtain the probability of observation at non-visited locations. Non- 13 visited locations were randomly located with the same density as the observed locations 14 (~0.0004/km2). Given the nature of presence-only data, predicted probabilities combine 15 the probability of the species being at the location, the probability of an observer being at 16 the same location, and the probability of the observer finding the species (Lobo et al. 17 2010). We assume that observations at every non-visited location i are distributed 18 according to a Bernoulli distribution Obsi ~ Bernoulli(p*i), where p*i is an a priori 19 probability distribution generated from confirmed observations (Fig. 2b). We generated 20 the a priori probability distribution as a quadratic density kernel raster layer using the R 21 package “splancs” (Rowlingson et al. 2013). By generating a prior distribution from the 22 observations, we assume that the entire study region has been sampled with the same 23 intensity. 24 We then modelled observations Obsi according to a logistic model, Obsi ~ 25 Bernoulli(pi), and logit(pi) = φ + αv · V + βv,i · V, where pi is the probability of observing 26 the species at location i, logit the logistic link function, φ is the regression intercept, and 27 Vv×i is a matrix for the environmental variables v. The spatially expanded model (Casetti 28 1997; Congdon 2003) assumes that the effect of an explanatory variable v on the response 29 variable pi varies among the observed locations. This assumption is particularly 30 convenient when fitting species distribution model along large ranges, where the species 31 can be locally adapted to e.g. temperature ranges (Turchin & Hanski 1997; Nilsson- 32 Örtman et al. 2013). The model allows estimating fixed parameters (αv; i.e. without 33 spatial variability) and flexible parameters (βv,i) that correct for the spatial variation of the 34 effect parameter αv, as well as for spatial autocorrelation on the observations. The 2 35 parameter βv,i is further modelled as βv,i = xi · γxv + yi · γyv, where γxv y γyv are correction 36 parameters for coordinates xi and yi. The combined effect (fixed and flexible) of variable 37 v varies for every location, and is described as δv,i = αv + βv,i, with an average of 𝛿𝑣̅ = 38 𝛼𝑣 + 𝛽𝑣̅ . 39 The final model presented (Table 1) is the result of a selection procedure based on 40 the deviance information criterion (DIC), an information-theoretic criterion that is 41 appropriate for Bayesian hierarchical modelling (Spiegelhalter et al. 2002). The lower the 42 DIC, the better the model is able to predict a new data set, and thus, the DIC penalizes for 43 increasing model complexity just as the commonly used Akaike’s information criterion 44 (AIC; Burnham & Anderson 2002). First, we compared models for each independent 45 environmental variable with a null model (i.e. only including the intercept parameter φ). 46 Then, we built the final model with a forward stepwise procedure, following the DIC 47 ranking of the variables (Tables S2). We used a threshold of 10 DIC units to consider 48 model improvement. A model could include correlated variables if the later added 49 variable improved the model fit, according to the over-parameterized models criterion 50 (Reichert & Omlin 1997). 51 52 53 54 55 References Casetti, E. (1997). The expansion method, mathematical modeling, and spatial econometrics. International Regional Science Review, 20, 9–33. Retrieved August 18, 2012, 56 57 Congdon, P. (2003). Applied Bayesian modelling. John Wiley and Sons, West Sussex, England. 58 59 60 Lobo, J.M., Jiménez-Valverde, A. & Hortal, J. (2010). The uncertain nature of absences and their importance in species distribution modelling. Ecography, 33, 103–114. Retrieved September 23, 2013, 61 62 63 Nilsson-Örtman, V., Stoks, R., De Block, M., Johansson, H. & Johansson, F. (2013). Latitudinally structured variation in the temperature dependence of damselfly growth rates. Ecology Letters, 16, 64–71. Retrieved March 15, 2013, 3 64 65 Reichert, P. & Omlin, M. (1997). On the usefulness of overparameterized ecological models. Ecological Modelling, 95, 289–299. Retrieved January 11, 2010, 66 67 68 Rowlingson, B., Diggle, P., Bivand, R., Petris, G. & Eglen, S. (2013). splancs: Spatial and space-time point pattern analysis. Retrieved from http://CRAN.Rproject.org/package=splancs 69 70 71 Turchin, P. & Hanski, I. (1997). An empirically based model for latitudinal gradient in vole population dynamics. The American Naturalist, 149, 842–874. Retrieved May 23, 2012, 72 73 4 74 Table S1. Complete list of observations ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 Source 1 4 1 2 4 4 4 1 9 9 1 3 3 3 3 3 4 4 3 9 3 3 3 3 4 3 2 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 X -62.883 -60.283 -62.618 -64.250 -64.760 -62.453 -65.541 -66.669 -67.615 -64.564 -62.816 -60.000 -62.980 -62.680 -65.470 -61.200 -60.450 -60.430 -61.170 -60.620 -61.280 -60.220 -64.230 -63.970 -63.930 -64.570 -63.430 -63.620 -63.580 -63.580 -58.680 -67.500 -63.580 -67.680 -67.620 -66.930 -66.230 -65.920 -66.400 -65.650 -64.600 -66.820 -68.000 -68.070 -68.000 -67.970 -68.400 -67.900 -67.900 -68.250 -67.920 -67.880 -67.900 -68.780 -68.100 -65.680 -65.480 Y -38.483 -22.350 -39.810 -27.733 -40.600 -23.467 -41.042 -37.155 -37.353 -37.285 -41.030 -22.500 -40.800 -39.480 -28.050 -27.220 -26.780 -26.350 -26.520 -25.950 -27.320 -26.870 -31.480 -31.620 -31.650 -31.480 -30.750 -31.330 -30.350 -30.400 -32.470 -30.000 -30.150 -37.800 -37.370 -36.250 -37.550 -38.150 -38.720 -37.320 -37.380 -28.550 -33.470 -33.580 -33.850 -34.050 -34.580 -34.830 -34.830 -34.830 -34.220 -34.480 -34.600 -32.970 -38.030 -39.270 -39.100 5 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 3 3 3 3 3 3 3 3 2 2 3 3 3 3 3 3 3 3 3 1 3 3 9 2 3 3 3 4 3 3 3 3 3 3 3 3 3 3 4 4 3 4 5 1 1 1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 -64.430 -65.250 -65.250 -63.970 -67.330 -67.780 -65.370 -62.830 -63.000 -63.470 -64.500 -63.450 -63.700 -63.950 -64.900 -62.850 -64.830 -65.280 -57.920 -62.580 -64.250 -64.480 -60.620 -64.270 -58.680 -64.970 -64.080 -63.000 -64.630 -68.080 -64.230 -64.080 -68.770 -64.180 -58.500 -68.400 -65.500 -60.670 -59.300 -57.880 -60.000 -65.006 -65.373 -62.249 -67.085 -64.692 -62.646 -63.006 -63.677 -65.169 -65.405 -64.535 -65.367 -64.883 -65.430 -65.367 -63.777 -62.820 -64.684 -64.932 -65.206 -40.100 -40.400 -40.400 -24.870 -31.480 -32.200 -32.770 -28.470 -28.470 -29.370 -27.400 -29.550 -29.520 -29.050 -27.520 -26.580 -28.000 -26.220 -22.330 -39.770 -27.730 -30.200 -25.980 -27.780 -32.470 -40.750 -38.970 -40.750 -37.420 -38.920 -27.730 -39.100 -33.000 -31.400 -34.670 -34.580 -40.500 -32.950 -23.100 -22.600 -22.500 -40.616 -41.565 -40.555 -39.623 -40.088 -40.184 -39.587 -38.879 -39.227 -39.500 -40.171 -43.291 -42.322 -41.688 -40.992 -40.880 -40.743 -40.631 -40.457 -40.333 6 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 -65.492 -65.827 -66.623 -66.536 -67.170 -66.349 -65.840 -65.541 -65.343 -64.423 -66.026 -67.766 -68.239 -67.393 -67.530 -66.660 -68.189 -67.431 -67.915 -67.741 -67.990 -68.276 -68.089 -67.766 -68.189 -68.015 -67.688 -67.436 -67.791 -67.643 -67.836 -68.192 -68.563 -67.851 -67.658 -67.050 -66.575 -67.169 -67.539 -67.228 -66.739 -67.361 -67.495 -67.791 -67.895 -67.213 -66.783 -66.546 -66.457 -65.315 -66.442 -67.035 -67.080 -67.124 -67.510 -67.777 -66.709 -66.724 -66.620 -66.397 -66.071 -40.495 -40.606 -39.786 -39.277 -39.214 -38.605 -38.146 -38.046 -37.425 -37.400 -37.412 -37.885 -37.822 -37.773 -37.251 -36.343 -36.244 -35.772 -35.809 -35.548 -35.424 -35.299 -35.063 -34.902 -34.765 -37.524 -34.380 -34.068 -34.157 -33.950 -33.757 -33.638 -33.401 -33.505 -33.253 -33.460 -33.223 -33.104 -32.912 -32.778 -33.015 -32.585 -32.422 -32.467 -32.274 -32.348 -32.511 -32.852 -32.556 -32.363 -32.096 -31.696 -31.236 -30.880 -30.376 -30.138 -29.501 -28.922 -28.655 -28.922 -29.634 7 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 2 2 2 2 2 2 7 4 4 6 5 -65.211 -64.143 -63.669 -63.832 -63.965 -63.165 -63.150 -63.135 -63.016 -63.209 -64.025 -64.929 -64.470 -65.048 -63.565 -63.076 -62.764 -62.616 -63.995 -64.677 -65.389 -64.484 -64.811 -63.728 -64.484 -63.921 -62.838 -62.571 -61.296 -61.163 -60.169 -60.347 -60.406 -59.383 -61.326 -60.584 -60.733 -61.459 -62.735 -63.639 -64.054 -64.292 -64.069 -64.025 -63.965 -63.951 -62.067 -59.442 -58.612 -59.027 -63.491 -67.400 -68.217 -68.751 -68.066 -64.427 -62.462 -62.084 -61.248 -60.034 -68.796 -31.518 -31.547 -31.710 -31.577 -31.206 -30.761 -30.539 -30.302 -30.020 -29.723 -30.420 -30.435 -30.213 -29.649 -29.530 -29.530 -29.100 -28.567 -28.507 -28.285 -28.240 -27.647 -27.528 -27.603 -26.802 -26.105 -26.120 -26.639 -27.617 -27.410 -27.054 -26.965 -26.520 -26.223 -26.550 -25.897 -25.526 -25.215 -24.310 -25.586 -25.289 -25.171 -24.652 -24.385 -24.103 -23.762 -23.065 -23.213 -22.160 -21.908 -24.358 -32.450 -32.134 -33.304 -33.300 -39.363 -21.651 -18.472 -20.546 -20.489 -37.162 8 241 242 243 244 75 76 77 78 79 80 81 82 83 84 85 86 5 5 5 9 -68.478 -67.835 -66.660 -69.916 -37.480 -30.863 -31.837 -40.029 Sources 1: Buskirk (1993) 2: Cabrera (1998) 3: The EMYSystem (http://emys.geo.orst.edu/cgi-bin/emysmap?tn=138&cf=ijklmno) 4: Ernst (1998) 5: Fritz et al. (2012) 6: Gonzales et al. (2006) 7: Ergueta & Morales (1996) 8: Richard (1999) 9: Waller (1986) 9 87 Table S2. Explanatory variables and model selection Explanatory variables included in the analysis. Each row belongs to an independent model, showing the deviance information criterion (DIC), and its difference (Δ) with the DIC of a null model (i.e. a model with only intercept parameters). Color shades are a visual help to order ΔDIC from gratest (red) to smallest (green). Variable DIC ΔDIC Null 1487.2 0.0 bio1 Annual Mean Temperature 851.2 636.0 1 bio2 Mean Diurnal Range 1253.6 233.6 2 bio3 Isothermality 1186.0 301.2 bio4 Temperature Seasonality3 1019.0 468.3 bio5 Max Temperature of Warmest Month 891.5 595.7 bio6 Min Temperature of Coldest Month 1163.4 323.8 4 bio7 Temperature Annual Range 1113.5 373.8 bio8 Mean Temperature of Wettest Quarter 1002.9 484.3 bio9 Mean Temperature of Driest Quarter 1385.8 101.4 bio10 Mean Temperature of Warmest Quarter 945.0 542.2 bio11 Mean Temperature of Coldest Quarter 988.5 498.7 bio12 Annual Precipitation 1304.1 183.1 bio13 Precipitation of Wettest Month 1321.9 165.3 bio14 Precipitation of Driest Month 1274.6 212.6 5 bio15 Precipitation Seasonality 1281.8 205.5 bio16 Precipitation of Wettest Quarter 1293.4 193.8 bio17 Precipitation of Driest Quarter 1291.1 196.1 bio18 Precipitation of Warmest Quarter 1213.4 273.8 bio19 Precipitation of Coldest Quarter 1251.5 235.8 himpact Areas of human impact over the biosfere6 1368.6 118.6 globedem Altitude 1406.2 81.0 LAIm Leaf Area Index 1296.2 191.0 iflworld World intact forest 1479.4 7.8 1 Mean of monthly (max temp - min temp) 2 (bio2/bio7) * 100 3 standard deviation *100. 4 bio5-bio6 5 coefficient of variation 6 binomial 88 10 89 90 91 92 Figure S1: BSEL model uncertainty. Mode of probability of observation and length of the 95% CI over the study area, for the final BSEL model. 11 93 94 95 96 97 Figure S2: Predictions of the final BSEL model. The colour scale indicates the probabilities of observation. Red and blue lines show protected areas where the species has and has not been reported, respectively. 98 12 99 100 Table S3. Presence of Chelonoidis chilensis on protected areas in Argentina and Bolivia. Table S3.1: Argentinean protected areas and probabilities of observation (p) of Chelonoidis chilensis predicted by the Bayesian Spatially Expanded Logistic (BSEL) model. The length of the 95% credible interval is (L 95% CI) shown. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 Protected Area Monte de las Barrancas Sierra de las Quijadas Valle Fértil Telteca Quebracho de la Legua Chancani Copo Guasamayo Limay Mahuida La Reforma (Univ.) Bahía de San Antonio La Humada La Reforma Talampaya Pichi Mahuida Punta Delgada Ischigualasto (o Valle de La Luna) Salitral Levalle Caleta Valdés Auca Mahuida Lihué Calel Meseta de Somuncurá Formosa El Payén Mar Chiquita Santa Ana Parque Luro Pampa del Indio Los Palmares Laguna La Felipa Laguna Guatrache Agua Dulce El Mangrullo Vaquerías Laguna de Llancanelo Lagunas y Palmares La Florida P. Presidencia de la Plaza Chaco La Quebrada Independent p(BSEL) L 95% CI Observation 0.89 0.08 0 0.88 0.11 1 0.87 0.27 1 0.86 0.13 1 0.85 0.09 0 0.84 0.15 0 0.82 0.16 1 0.74 0.16 0 0.71 0.2 1 0.7 0.18 1 0.7 0.24 0 0.69 0.18 0 0.69 0.19 0 0.68 0.32 1 0.67 0.19 1 0.66 0.43 0 0.65 0.27 1 0.64 0.2 0 0.63 0.22 0 0.61 0.28 1 0.61 0.2 1 0.59 0.19 0 0.59 0.18 1 0.56 0.26 1 0.56 0.19 0 0.52 0.2 0 0.45 0.2 0 0.45 0.2 1 0.45 0.18 0 0.43 0.2 0 0.42 0.23 0 0.41 0.24 0 0.4 0.32 0 0.39 0.23 0 0.39 0.25 0 0.37 0.2 0 0.35 0.23 0 0.3 0.18 0 0.29 0.18 0 0.26 0.23 0 13 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 Don Guillermo La Norma Quebrada del Portugués El Rey Potrero 7-B (Los Quebrachales) Aguas Chiquitas La Loca Iberá Del Medio - Los Caballos Río Pilcomayo Calilegua Laguna Hu Quebrada del Condorito Mburucuyá General Obligado El Leoncito Baritú Campo General Belgrano Bosques Petrificados de Jaramillo Sierra de San Javier Acambuco Campo Salas Pre Delta Diamante Virá Pitá Potrero de Yala Los Cardones Lago Urugua-í Bosque Petrificado Sarmiento Iguazú Otamendi El Tromen Laguna Blanca (Neuquén) Laguna Blanca Litoral Chaqueño Cabo Blanco Cerro Currumahuida Laguna Aleusco Los Andes Volcán Tupungato Laguna de los Pozuelos BioRes (National) Campo de los Alisos Lago Puelo Olaroz-Caucharí Salto Encantado del Valle del Cuñá Pirú Apipé Grande 0.26 0.25 0.23 0.22 0.22 0.22 0.21 0.2 0.19 0.18 0.17 0.17 0.14 0.12 0.12 0.12 0.1 0.1 0.09 0.08 0.08 0.08 0.079 0.06 0.06 0.06 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.03 0.03 0.02 0.02 0.02 0.02 0.19 0.18 0.23 0.21 0.18 0.21 0.18 0.18 0.16 0.17 0.17 0.12 0.21 0.15 0.12 0.21 0.23 0.18 0.12 0.19 0.11 0.1 0.1 0.09 0.11 0.13 0.18 0.09 0.16 0.07 0.13 0.12 0.11 0.07 0.09 0.09 0.05 0.07 0.09 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.02 0.02 0.01 0.01 0.16 0.14 0.06 0.04 0 0 0 0 0.01 0.01 0.03 0.05 0 0 14 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 Esperanza Saltito Laguna Los Juncos Punta Lara Nahuel Huapi Par1 Rio Limay Lanín Los Alerces Copahue-Caviahue El Destino (P. Costero del Sur) Urugua-í Nahuel Huapi Parque Nahuel Huapi Reserva Selva Marginal de Hudson Divisadero Largo El Manzano Histórico Lago Baggilt Aconcagua Cañada Molina Nant y Fall (Arroyo Las Caídas) Papel Misionero Laguna Brava Alto Andina de la Chinchilla Colonia Benítez Laguna La Salada La Loma del Cristal Moconá Yacuy Florencio de Basaldua Carpincho Los Sosa Guaraní Cruce Caballero Cerro Azul (E.E.A.) E.E.A. Anexo Cuartel Río Victoria De la Sierra Crovetto Guardaparque Horacio Foerster Piñalito General Belgrano Los Arrayanes Isla Botija Sierra del Tigre Punta Márquez Lago Guacho Punta Norte Cerro Alcazar La Florida R. 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.12 0.03 0.03 0.03 0.07 0.04 0.11 0.06 0.17 0.03 0.09 0.04 0.05 0.03 0 0 0 0.03 0 0 0 0.03 0.03 0 0 0 0 0 0 0 0 0.02 0 0 0 0 0.02 0.01 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 133 134 135 136 137 138 139 140 141 142 143 144 El Estero Isla Laguna Alsina Yabotí Golfo San José Perito Moreno Los Glaciares Ira Hiti Cabo dos Bahías Cayastá El Pozo Punta Pirámides Punta Loma 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.02 0 0.01 0.03 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 101 102 Table S3.2: Bolivian protected areas and probabilities of observation (p) of Chelonoidis chilensis predicted by the Bayesian Spatially Expanded Logistic (BSEL) model. The length of the 95% credible interval is (L 95% CI) shown. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 Protected Area Area de proteccion del Quebracho Colorado Kaa-iya del Gran Chaco Isiboro Securé Tariquía Madidi Area de proteccion del Pino del Cerro Otuquis Pilón Lajas Carrasco Cordillera de Sama Iñao Apolobamba Cotapata Cotapata Amboró Amboró El Palmar Estancias San Rafael Noel Kempff Mercado Ríos Blanco y Negro San Matías Toro Toro Tunari Cavernas del Repechón Cerro Tapilla Eduardo Avaroa p(BSEL) 0.28 0.16 0.09 0.09 0.05 0.04 0.04 0.04 0.03 0.03 0.03 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0 0 0 L 95% CI 0.27 0.23 0.8 0.14 0.35 0.13 0.08 0.35 0.3 0.19 0.04 0.28 0.12 0.12 0.04 0.05 0.02 0.03 0.02 0.03 0.01 0.02 0.05 0 0 0.02 Independent Observation 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 27 28 29 30 31 32 33 34 35 36 37 38 Estación Biológica del Beni Flavio Machicado Viscarra Huancaroma Incacasani Altamachi Las Barrancas Llica Madidi Mallasa Mirikiri Sajama Tuni Condoriri Yura 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.04 0 0 0 0 0 0.01 0.01 0.01 0 0 0 0 0 0 0 0 0 0 0 0 103 17
© Copyright 2026 Paperzz