Micro Economics in a Global Economy Chapter 4 The Nature and Scope of Managerial Economics PowerPoint Slides by Robert F. Brooker Harcourt, Inc. items and derived items copyright © 2001 by Harcourt, Inc. The Identification Problem PowerPoint Slides by Robert F. Brooker Harcourt, Inc. items and derived items copyright © 2001 by Harcourt, Inc. Demand Estimation: Marketing Research Approaches • • • • • • Consumer Surveys Observational Research Consumer Clinics Market Experiments Virtual Shopping Virtual Management PowerPoint Slides by Robert F. Brooker Harcourt, Inc. items and derived items copyright © 2001 by Harcourt, Inc. Regression Analysis Year X Y 1 10 44 2 9 40 3 11 42 4 12 46 5 11 48 6 12 52 7 13 54 8 13 58 9 14 56 10 15 60 PowerPoint Slides by Robert F. Brooker Scatter Diagram Harcourt, Inc. items and derived items copyright © 2001 by Harcourt, Inc. Regression Analysis • Regression Line: Line of Best Fit • Regression Line: Minimizes the sum of the squared vertical deviations (et) of each point from the regression line. • Ordinary Least Squares (OLS) Method PowerPoint Slides by Robert F. Brooker Harcourt, Inc. items and derived items copyright © 2001 by Harcourt, Inc. Regression Analysis PowerPoint Slides by Robert F. Brooker Harcourt, Inc. items and derived items copyright © 2001 by Harcourt, Inc. Ordinary Least Squares (OLS) Model: Yt a bX t et € Y€t a€ bX t et Yt Y€t PowerPoint Slides by Robert F. Brooker Harcourt, Inc. items and derived items copyright © 2001 by Harcourt, Inc. Ordinary Least Squares (OLS) Objective: Determine the slope and intercept that minimize the sum of the squared errors. n n n t 1 t 1 t 1 2 2 € )2 € € e ( Y Y ) ( Y a bX t t t t t PowerPoint Slides by Robert F. Brooker Harcourt, Inc. items and derived items copyright © 2001 by Harcourt, Inc. Ordinary Least Squares (OLS) Estimation Procedure n b€ (X t 1 t X )(Yt Y ) n 2 ( X X ) t € a€ Y bX t 1 PowerPoint Slides by Robert F. Brooker Harcourt, Inc. items and derived items copyright © 2001 by Harcourt, Inc. Ordinary Least Squares (OLS) Estimation Example Time Xt 1 2 3 4 5 6 7 8 9 10 10 9 11 12 11 12 13 13 14 15 120 n 10 Yt 44 40 42 46 48 52 54 58 56 60 500 n n X t 120 Yt 500 t 1 n X t 1 X t 120 12 n 10 t 1 n Yt 500 50 10 t 1 n Y PowerPoint Slides by Robert F. Brooker Xt X Yt Y -2 -3 -1 0 -1 0 1 1 2 3 -6 -10 -8 -4 -2 2 4 8 6 10 n (X t 1 t 1 ( X t X )2 12 30 8 0 2 0 4 8 12 30 106 4 9 1 0 1 0 1 1 4 9 30 t X ) 2 30 106 b€ 3.533 30 t X )(Yt Y ) 106 a€ 50 (3.533)(12) 7.60 n (X ( X t X )(Yt Y ) Harcourt, Inc. items and derived items copyright © 2001 by Harcourt, Inc. Ordinary Least Squares (OLS) Estimation Example n X n 10 n X t 1 t n (X t 1 t 1 120 n Y t 1 t n 500 Yt 500 50 10 t 1 n Y t X ) 30 106 € b 3.533 30 t X )(Yt Y ) 106 a€ 50 (3.533)(12) 7.60 2 n (X t 1 X t 120 12 n 10 PowerPoint Slides by Robert F. Brooker Harcourt, Inc. items and derived items copyright © 2001 by Harcourt, Inc. Tests of Significance Standard Error of the Slope Estimate sbˆ 2 ˆ (Yt Y ) (n k ) ( X t X ) PowerPoint Slides by Robert F. Brooker 2 e (n k ) ( X 2 t t X )2 Harcourt, Inc. items and derived items copyright © 2001 by Harcourt, Inc. Tests of Significance Example Calculation Y€t et Yt Y€t et2 (Yt Y€t )2 ( X t X )2 44 42.90 1.10 1.2100 4 9 40 39.37 0.63 0.3969 9 3 11 42 46.43 -4.43 19.6249 1 4 12 46 49.96 -3.96 15.6816 0 5 11 48 46.43 1.57 2.4649 1 6 12 52 49.96 2.04 4.1616 0 7 13 54 53.49 0.51 0.2601 1 8 13 58 53.49 4.51 20.3401 1 9 14 56 57.02 -1.02 1.0404 4 10 15 60 60.55 -0.55 0.3025 9 65.4830 30 Time Xt Yt 1 10 2 n n e (Yt Y€t )2 65.4830 t 1 2 t t 1 (X t 1 PowerPoint Slides by Robert F. Brooker (Y Y€) ( n k ) ( X X ) 2 n X ) 30 2 t sb€ t t 2 65.4830 0.52 (10 2)(30) Harcourt, Inc. items and derived items copyright © 2001 by Harcourt, Inc. Tests of Significance Example Calculation n n t 1 t 1 2 2 € e ( Y Y ) t t t 65.4830 n 2 ( X X ) 30 t t 1 2 € (Yt Y ) 65.4830 sb€ 0.52 2 ( n k ) ( X t X ) (10 2)(30) PowerPoint Slides by Robert F. Brooker Harcourt, Inc. items and derived items copyright © 2001 by Harcourt, Inc. Tests of Significance Calculation of the t Statistic b€ 3.53 t 6.79 sb€ 0.52 Degrees of Freedom = (n-k) = (10-2) = 8 Critical Value at 5% level =2.306 PowerPoint Slides by Robert F. Brooker Harcourt, Inc. items and derived items copyright © 2001 by Harcourt, Inc. Tests of Significance Decomposition of Sum of Squares Total Variation = Explained Variation + Unexplained Variation 2 2 € € (Yt Y ) (Y Y ) (Yt Yt ) 2 PowerPoint Slides by Robert F. Brooker Harcourt, Inc. items and derived items copyright © 2001 by Harcourt, Inc. Tests of Significance Decomposition of Sum of Squares PowerPoint Slides by Robert F. Brooker Harcourt, Inc. items and derived items copyright © 2001 by Harcourt, Inc. Tests of Significance Coefficient of Determination R2 2 € ( Y Y ) Explained Variation 2 TotalVariation ( Y Y ) t 373.84 R 0.85 440.00 2 PowerPoint Slides by Robert F. Brooker Harcourt, Inc. items and derived items copyright © 2001 by Harcourt, Inc. Tests of Significance Coefficient of Correlation r R 2 withthe sign of b€ 1 r 1 r 0.85 0.92 PowerPoint Slides by Robert F. Brooker Harcourt, Inc. items and derived items copyright © 2001 by Harcourt, Inc. Multiple Regression Analysis Model: PowerPoint Slides by Robert F. Brooker Y a b1 X1 b2 X 2 bk ' X k ' Harcourt, Inc. items and derived items copyright © 2001 by Harcourt, Inc. Multiple Regression Analysis Adjusted Coefficient of Determination (n 1) R 1 (1 R ) (n k ) 2 PowerPoint Slides by Robert F. Brooker 2 Harcourt, Inc. items and derived items copyright © 2001 by Harcourt, Inc. Multiple Regression Analysis Analysis of Variance and F Statistic Explained Variation /(k 1) F Unexplained Variation /(n k ) R 2 /(k 1) F (1 R 2 ) /(n k ) PowerPoint Slides by Robert F. Brooker Harcourt, Inc. items and derived items copyright © 2001 by Harcourt, Inc. Problems in Regression Analysis • Multicollinearity: Two or more explanatory variables are highly correlated. • Heteroskedasticity: Variance of error term is not independent of the Y variable. • Autocorrelation: Consecutive error terms are correlated. PowerPoint Slides by Robert F. Brooker Harcourt, Inc. items and derived items copyright © 2001 by Harcourt, Inc. Durbin-Watson Statistic Test for Autocorrelation n d 2 ( e e ) t t 1 t 2 n 2 e t t 1 If d=2, autocorrelation is absent. PowerPoint Slides by Robert F. Brooker Harcourt, Inc. items and derived items copyright © 2001 by Harcourt, Inc. Steps in Demand Estimation • • • • • Model Specification: Identify Variables Collect Data Specify Functional Form Estimate Function Test the Results PowerPoint Slides by Robert F. Brooker Harcourt, Inc. items and derived items copyright © 2001 by Harcourt, Inc. Functional Form Specifications Linear Function: QX a0 a1PX a2 I a3 N a4 PY Power Function: QX a( PXb1 )( PYb2 ) PowerPoint Slides by Robert F. Brooker e Estimation Format: ln QX ln a b1 ln PX b2 ln PY Harcourt, Inc. items and derived items copyright © 2001 by Harcourt, Inc.
© Copyright 2026 Paperzz