1/30 Automatically Improving the Anytime Behaviour of MOEAs A. Radulescu, M. LópezIbáñez, T. Stützle Introduction Anytime optimization Experimental setup Automatically Improving the Anytime Behaviour of Multiobjective Evolutionary Algorithms Andreea Radulescu1 Manuel López-Ibáñez2 Thomas Stützle2 1 LINA, Results Conclusion UMR CNRS 6241, Université de Nantes, Nantes, France [email protected] 2 IRIDIA, CoDE, Université Libre de Bruxelles (ULB), Brussels, Belgium [email protected],[email protected] March 22nd, 2013 2/30 Automatically Improving the Anytime Behaviour of MOEAs A. Radulescu, M. LópezIbáñez, T. Stützle Summary 1 Introduction 2 Anytime optimization 3 Experimental setup 4 Results 5 Conclusion Introduction Anytime optimization Experimental setup Results Conclusion 3/30 Introduction Evolutionary Algorithms Automatically Improving the Anytime Behaviour of MOEAs A. Radulescu, M. LópezIbáñez, T. Stützle Initialization Parent selection Parents Recombination Population Introduction Anytime optimization Experimental setup Termination Survivor selection Mutation Offspring Results Conclusion Figure: General framework of Evolutionary Algorithms 4/30 Introduction Manual vs Automatic Tuning Automatically Improving the Anytime Behaviour of MOEAs A. Radulescu, M. LópezIbáñez, T. Stützle Finding an appropriate parameter configuration for a specific algorithm is a difficult optimization problem; Introduction Many evolutionary algorithms are still manually tuned; Anytime optimization Experimental setup Results Conclusion Parameter values are established by conventions, ad hoc choices and experimental comparisons on a limited scale; Automatic tuning methods are available that configure evolutionary algorithms without much human effort. Introduction 5/30 Automatic Tuning Final quality Automatically Improving the Anytime Behaviour of MOEAs A. Radulescu, M. LópezIbáñez, T. Stützle Introduction Anytime optimization Experimental setup Results Conclusion Figure: Quality of Pareto-front approximations through a run Introduction 6/30 Automatic Tuning Anytime behaviour Automatically Improving the Anytime Behaviour of MOEAs A. Radulescu, M. LópezIbáñez, T. Stützle Introduction Anytime optimization Experimental setup Results Conclusion Figure: Anytime behaviour quality 7/30 Introduction Purpose of the research Automatically Improving the Anytime Behaviour of MOEAs A. Radulescu, M. LópezIbáñez, T. Stützle Parameter values greatly determine the success of an EA in reaching optimal solutions; Introduction Anytime optimization Experimental setup Results Conclusion Improve the anytime behaviour of multi-objective evolutionary algorithms; Find automatically the algorithm configurations that produce the best anytime behaviour. 8/30 Automatically Improving the Anytime Behaviour of MOEAs A. Radulescu, M. LópezIbáñez, T. Stützle Summary 1 Introduction 2 Anytime optimization 3 Experimental setup Tested MOEAs Benchmark problems Monotonicity of hypervolume in MOEA The irace package 4 Results Tuning for anytime behaviour Tuning for final quality 5 Conclusion Introduction Anytime optimization Experimental setup Results Conclusion 9/30 Anytime optimization Automatically Improving the Anytime Behaviour of MOEAs A. Radulescu, M. LópezIbáñez, T. Stützle An anytime algorithm returns as high-quality solutions as possible at any moment of its execution; Introduction Anytime optimization Experimental setup Results Conclusion The evaluation of the anytime behaviour of an algorithm can be seen as a bi-objective problem; The non-dominated front so obtained reflects the quality of the anytime behaviour of the algorithm. 10/30 Anytime optimization Automatically Improving the Anytime Behaviour of MOEAs A. Radulescu, M. LópezIbáñez, T. Stützle Introduction Anytime optimization Experimental setup Results Conclusion Figure: Anytime behaviour quality 11/30 Anytime optimization Automatically Improving the Anytime Behaviour of MOEAs A. Radulescu, M. LópezIbáñez, T. Stützle Introduction Anytime optimization Experimental setup Results Conclusion Figure: Anytime behaviour quality 12/30 Anytime optimization Automatically Improving the Anytime Behaviour of MOEAs A. Radulescu, M. LópezIbáñez, T. Stützle Introduction Anytime optimization Experimental setup Results Conclusion Figure: Anytime behaviour quality 13/30 Anytime optimization Automatically Improving the Anytime Behaviour of MOEAs A. Radulescu, M. LópezIbáñez, T. Stützle Introduction Anytime optimization Experimental setup Results Conclusion Figure: Anytime behaviour quality 14/30 Automatically Improving the Anytime Behaviour of MOEAs A. Radulescu, M. LópezIbáñez, T. Stützle Summary 1 Introduction 2 Anytime optimization 3 Experimental setup Tested MOEAs Benchmark problems Monotonicity of hypervolume in MOEA The irace package 4 Results Tuning for anytime behaviour Tuning for final quality 5 Conclusion Introduction Anytime optimization Experimental setup Tested MOEAs Benchmark problems Monotonicity of hypervolume in MOEA The irace package Results Conclusion 15/30 Automatically Improving the Anytime Behaviour of MOEAs A. Radulescu, M. LópezIbáñez, T. Stützle Tested MOEAs IBEA (Indicator-Based Evolutionary Algorithm) it can be adapted to arbitrary preference information; does not require additional techniques in order to preserve the diversity of the population. Introduction Anytime optimization Experimental setup NSGAII (Nondominated Sorting Genetic Algorithm II) Uses a fast nondominated sorting procedure; Implements an elitist-preserving approach. Tested MOEAs Benchmark problems Monotonicity of hypervolume in MOEA The irace package Results Conclusion SPEA2 (Strength Pareto Evolutionary Algorithm 2) a fixed-sized archive method; a nearest neighbor density estimation technique. 16/30 Automatically Improving the Anytime Behaviour of MOEAs A. Radulescu, M. LópezIbáñez, T. Stützle Introduction Anytime optimization Experimental setup Tested MOEAs Parameters Name crossoverProbability externalMutationProbability internalMutationProbability populationSize crossoverDistrIndex Tested MOEAs Benchmark problems Monotonicity of hypervolume in MOEA The irace package Results Conclusion mutationDistrIndex scalingFactor (IBEA) archiveSize (SPEA2) k(SPEA2) Role probability of mating two solutions probability of mutating a solution probability of mutating a variable in a solution number of solutions distance between the children and their parents distribution of the mutated values fitness scaling factor size of the archive k-th nearest neighbour Table: Parameters of IBEA, NSGAII and SPEA2 Type real real real integer integer integer real integer integer 17/30 Automatically Improving the Anytime Behaviour of MOEAs A. Radulescu, M. LópezIbáñez, T. Stützle Benchmark problems ZDT Scalable to any number of decision variables; Controlled difficulty in converging to the Pareto-optimal front; Pareto-optimal front easy to construct. Introduction Anytime optimization Experimental setup Tested MOEAs Benchmark problems Monotonicity of hypervolume in MOEA The irace package Results Conclusion ZDT1 convex ZDT2 nonconvex ZDT3 noncontiguous 18/30 Benchmark problems DTLZ Automatically Improving the Anytime Behaviour of MOEAs A. Radulescu, M. LópezIbáñez, T. Stützle + scalable to any number of objectives. Introduction Anytime optimization Experimental setup Tested MOEAs Benchmark problems Monotonicity of hypervolume in MOEA The irace package Results Conclusion DTLZ2 DTLZ5 DTLZ7 disconnected set 19/30 Monotonicity of hypervolume in MOEA Automatically Improving the Anytime Behaviour of MOEAs A. Radulescu, M. LópezIbáñez, T. Stützle Introduction Anytime optimization ZDT1 without an external archive ZDT1 with an external unbounded archive DTLZ1 without an external archive DTLZ1 with an external unbounded archive Experimental setup Tested MOEAs Benchmark problems Monotonicity of hypervolume in MOEA The irace package Results Conclusion 20/30 Automatically Improving the Anytime Behaviour of MOEAs A. Radulescu, M. LópezIbáñez, T. Stützle Introduction Anytime optimization Experimental setup The irace package The iterated racing algorithm sampling: parameter configurations are sampled from a probabilistic distribution (uniformly random at the start); selecting: parameter configurations are run on a few training problem instances, and statistically worse configurations are discarded until a few remain or computational budget exhausted; Tested MOEAs Benchmark problems Monotonicity of hypervolume in MOEA The irace package Results Conclusion updating: the sampling distribution is modified according to the selected configurations to bias sampling towards best configurations found. 21/30 Automatically Improving the Anytime Behaviour of MOEAs A. Radulescu, M. LópezIbáñez, T. Stützle Summary 1 Introduction 2 Anytime optimization 3 Experimental setup Tested MOEAs Benchmark problems Monotonicity of hypervolume in MOEA The irace package 4 Results Tuning for anytime behaviour Tuning for final quality 5 Conclusion Introduction Anytime optimization Experimental setup Results Tuning for anytime behaviour Tuning for final quality Conclusion 22/30 Tuning for anytime behaviour Anytime behaviour values Automatically Improving the Anytime Behaviour of MOEAs A. Radulescu, M. LópezIbáñez, T. Stützle NSGAII DTLZ IBEA DTLZ ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● 0.8 ● ● ● ● ● ● ● ● ● ● ● ● ● 1.1 1.1 1.0 ● ● ●● ● ● ● ● ●● ● ● ● ● ● ● ●● ● 0.9 ● Default ● 0.9 0.9 ● ● ● ● ● ●● ● ● ● ● ● ●● ●● ● ●● ●● 1.0 ● ● ● ● ● ● Default 1.1 ● 0.8 Anytime optimization Default 1.0 ● 0.7 Introduction SPEA2 DTLZ ● ● ● ● ●● ● ● ● ●● ● ● ● ● ● ● ● ● ● 0.7 0.8 0.7 ● ● 0.6 0.9 AnytimeTuned 1.0 1.1 0.8 ● 0.6 Experimental setup ● ● 0.7 0.8 0.9 1.0 AnytimeTuned 1.1 ● 0.8 0.9 1.0 AnytimeTuned Results Tuning for anytime behaviour Tuning for final quality Conclusion Figure: Anytime behaviour quality for the default configuration versus configurations tuned for anytime behaviour 1.1 ● ● ● ● ● ● ● ●● ● ●●● ● ● ● ● ●● 23/30 Tuning for anytime behaviour Quality variation 2000 Evaluations 3000 500 1000 2000 Evaluations 3000 1.20 Hypervolume 0 1.10 1.20 ParetoOptimal SPEA2Default SPEA2Anytime SPEA2Final ParetoOptimal IBEADefault IBEAAnytime IBEAFinal 1.00 1.25 1.30 500 1000 1.15 Hypervolume 0 1.10 Hypervolume 1.20 ParetoOptimal NSGAIIDefault NSGAIIAnytime NSGAIIFinal 1.05 Experimental setup 1.10 Anytime optimization 1.00 Introduction 1.30 A. Radulescu, M. LópezIbáñez, T. Stützle 1.30 Automatically Improving the Anytime Behaviour of MOEAs 0 500 1000 2000 Evaluations Results Tuning for anytime behaviour Tuning for final quality Conclusion Figure: Variation of the quality of the Pareto front obtained for the three different configurations 3000 24/30 Tuning for anytime behaviour Final values Automatically Improving the Anytime Behaviour of MOEAs 1.2 ● ● ● ● ● ● ● ● ● ● ●● ● ●● ● ● ● ● ●● ● ● ●● ●● ● ● ●● ● ● ● ● ● ● ●● ● ● ●●● ● ● ● ● ● ● ● 1.1 ● ● ● ● 1.0 ● 1.1 ● Default ● 1.1 Default ● ● ● ● ● Anytime optimization ● ● 1.0 ● ● ● ● 1.0 0.9 ● ● ● ● ● 1.0 1.1 0.8 ● 0.9 ● Experimental setup ● ● 1.2 ● ● ● IBEA DTLZ ● ● ●● ●● ● ● ●● ● ● ● ● 1.2 ● 1.3 1.3 ●● ● ● Introduction SPEA2 DTLZ ● ● ● ● ● ● ●● ● ● ● 1.3 NSGAII DTLZ Default A. Radulescu, M. LópezIbáñez, T. Stützle ● 1.2 AnytimeTuned 1.3 0.9 1.0 1.1 AnytimeTuned 1.2 1.3 ● 0.8 0.9 1.0 1.1 1.2 1.3 AnytimeTuned Results Tuning for anytime behaviour Tuning for final quality Conclusion Figure: Final Pareto front quality for the default configuration versus configurations tuned for anytime behaviour 25/30 Tuning for final quality Anytime behaviour values Automatically Improving the Anytime Behaviour of MOEAs NSGAII ZDT SPEA2 ZDT 1.1 ●● ● ● ●● ● Tuning for final quality Conclusion ● ● 0.8 0.8 ● 0.7 0.7 ● ● ● 0.7 ● 0.7 Tuning for anytime behaviour ● ● ● ● Results ● ● ● ● ● ● ●● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● 1.0 1.0 FinalTuned ●● ● ● ●● ● ● 0.9 ● ● ●● ● ● ● ● Experimental setup ●● ●● ● ● ● ● FinalTuned ● ● ● ● 1.0 ●● ●● ● ● 0.9 FinalTuned ● ● 0.8 Anytime optimization ● ● ● ● 1.1 1.1 ● ● Introduction IBEA ZDT ● ● ● ● ● ● 0.9 A. Radulescu, M. LópezIbáñez, T. Stützle 0.8 0.9 AnytimeTuned 1.0 1.1 0.7 0.8 0.9 1.0 AnytimeTuned 1.1 0.7 0.8 0.9 1.0 AnytimeTuned Figure: Difference for anytime behaviour quality 1.1 ● 26/30 Tuning for final quality Final values Automatically Improving the Anytime Behaviour of MOEAs SPEA2 ZDT ● ● ● ● ● ● 1.20 IBEA ZDT 1.2 NSGAII ZDT 1.2 A. Radulescu, M. LópezIbáñez, T. Stützle ● ● ● ● ● ● ●● ● ●● ● ● ●● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● 1.1 1.15 1.1 ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● Tuning for anytime behaviour Tuning for final quality Conclusion 1.0 ● 0.9 1.0 ● 0.7 0.8 1.00 0.8 ● FinalTuned ● ● ● ● 0.9 FinalTuned 1.10 1.05 ● ● ● ● ● ● ● 1.00 1.05 1.10 AnytimeTuned 1.15 0.7 ● 0.95 Results ● ●● ● 0.6 Experimental setup ● 0.95 Anytime optimization FinalTuned ● Introduction 1.20 0.6 0.7 0.8 0.9 1.0 AnytimeTuned 1.1 1.2 0.7 0.8 0.9 1.0 AnytimeTuned Figure: Difference for the quality of the final Pareto front 1.1 1.2 27/30 Tuning for final quality Quality variation Automatically Improving the Anytime Behaviour of MOEAs Results Tuning for anytime behaviour Tuning for final quality Conclusion 2000 Evaluations Default conf. 3000 ParetoOptimal IBEA NSGAII SPEA2 0 500 1000 2000 Evaluations Anytime conf. 3000 1.25 1.20 ParetoOptimal IBEA NSGAII SPEA2 1.15 Hypervolume 1.30 1.30 500 1000 1.20 Hypervolume 0 1.10 Hypervolume 1.20 ParetoOptimal IBEA NSGAII SPEA2 1.00 Experimental setup 1.10 Anytime optimization 1.00 Introduction 1.30 A. Radulescu, M. LópezIbáñez, T. Stützle 0 500 1000 2000 Evaluations Final conf. Figure: Variation of the quality of the Pareto front approximation obtained by the three MOEAs 3000 28/30 Conclusion Automatically Improving the Anytime Behaviour of MOEAs A. Radulescu, M. LópezIbáñez, T. Stützle 1 The quality of the anytime behaviour is significantly improved; Introduction 2 The tuned configurations improve the search behaviour of MOEAs; 3 The MOEAs are more robust to specific termination criteria; 4 Substantial human effort is saved. Anytime optimization Experimental setup Results Conclusion 29/30 Future work Automatically Improving the Anytime Behaviour of MOEAs A. Radulescu, M. LópezIbáñez, T. Stützle −→ The impact of the anytime behaviour tuning can be extended: Introduction Anytime optimization Experimental setup Results Conclusion Different categorical parameters; Analysis of others MOEAs; Tests with different benchmark problems. 30/30 Automatically Improving the Anytime Behaviour of MOEAs A. Radulescu, M. LópezIbáñez, T. Stützle Introduction Anytime optimization Experimental setup Automatically Improving the Anytime Behaviour of Multiobjective Evolutionary Algorithms Andreea Radulescu1 Manuel López-Ibáñez2 Thomas Stützle2 1 LINA, Results Conclusion UMR CNRS 6241, Université de Nantes, Nantes, France [email protected] 2 IRIDIA, CoDE, Université Libre de Bruxelles (ULB), Brussels, Belgium [email protected],[email protected] March 22nd, 2013
© Copyright 2026 Paperzz