Eng8450 + MWNT Sample annealed 15 minutes in the press (140 C) Around 30 minutes between put the sample in the equipment and to start the experiment DC decrease with Eng Eng + 0,05 MWNT Eng + 0,1 MWNT Eng + 0,5 MWNT Eng + 1,0 MWNT Eng + 3,0 MWNT Eng + 6,0 MWNT Eng + 12,0 MWNT low amount of CNT!!!!! -3 10 -5 S (S/cm) 10 -7 10 DC region -9 10 Dielectric region -11 10 -13 10 -2 -1 0 1 2 3 4 5 6 7 10 10 10 10 10 10 10 10 10 10 Freq. [Hz] How we can understand this “rare” behavior? Symmetric Hopping Model Based on the study of the displacement of a charge carrier from one position to another close by The nearest-neighbor jump rate (frequency) is: 0 exp( E ) 1 kB T It is possible to show that the transition from DC to AC is determined by the smallest jump rate (c) , and the transition will be given by: DC AC c t 1 n q2 D ( ) From this model is showed that: ( ) kB T D ( ) v(0) v(t ) e t dt 0 So, it is possible to think that the presence of nanotubes increase the activation energy for the jump-rate of charge carriers or decrease its diffusion processes. At higher amount the last is compensated by the percolation process. Another approach based on the same arguments define the probability for a electron (“hole”) transition from state “a” to “b”, as: pab ab exp( qab ) ab exp( 2 ab R) exp( Wab ) kB T Wab (a b ) ( Ea Eb ) /4 (a b ) 2 ’s are the reorganization energy It is showed that the response of the system to an alternating field is: ( ) e 2 N s2 12 k B T [ R 2 P( R, qab , qba )] 2 ab qab qba ln The major contribution to the conductivity comes from polymer pair elements satisfying the last assumption!!! The response at very low frequencies involve pair states with very low transition rates. As a consequence the rare transitions from pair states into new states become more significant. Again, the presence of nanotubes could change the dynamic of charge carriers, decreasing the conductivity Another theory is based on the equivalent circuit concept: Any solid with spatially varying free charge conductivity and uniform charge dielectric constant At high frequencies the conductive regions are important and at low frequencies the isolated areas limit the charge carrier motion. Under AC conditions, it is defined: ( ) ' ( ) i ' ' ( ) Resistor contribution Conductance contribution Eng8450 + MWNT -1 10 -3 10 Eng Eng + 0,05 MWNT Eng + 0,1 MWNT Eng + 0,5 MWNT Eng + 1,0 MWNT Eng + 3,0 MWNT Eng + 6,0 MWNT Eng + 12,0 MWNT S' (S/cm) -5 10 -7 10 ’ is related with the current through the resistors Below the percolation point, the high frequency area is influenced by the CNT (conductive) At low frequency, the isolated-region (bulk polymer) make the greater contributions -9 10 -11 10 -2 10 Eng Eng 0,05 MWNT Eng 0,1 MWNT Eng 0,5 MWNT Eng 1,0 MWNT Eng 3 MWNT Eng 6 MWNT Eng 12MWNT -4 ’’ is related with the current through the capacitors S'' (S/cm) -2 -1 0 1 2 3 4 5 6 7 10 10 10 10 10 10 10 10 10 10 10 Freq. [Hz] -6 10 -8 10 -10 10 -12 The presence of CNT does not affect the conductance of the sample below the percolation point 10 -14 10 -2 -1 0 1 2 3 4 5 6 7 10 10 10 10 10 10 10 10 10 10 Freq. [Hz] Eng8450 + SWNT -5 10 Same behavior!!! Eng Eng + 0,05 SWNT Eng + 0,1 SWNT Eng + 1,0 SWWT -6 10 -7 10 CNTs affect the resistor contribution of the composite, and at low frequencies changes in the dynamic of the polymers due to CNT decrease their conductivity S (S/cm) -8 10 -9 10 -10 10 -11 10 -12 10 -13 10 -2 -1 0 1 2 3 4 5 6 7 10 10 10 10 10 10 10 10 10 10 Freq. [Hz] -7 -5 10 10 10 -9 -7 10 -8 S'' (S/cm) S' (S/cm) 10 -10 10 -11 10 10 -9 10 -10 10 -11 10 -12 10 -12 10 -13 10 Eng Eng + 0,05 SWNT Eng + 0,1 SWNT Eng + 1,0 SWNT -6 10 Eng Eng + 0,05 SWNT Eng + 0,1 SWNT Eng + 1,0 SWWT -8 -2 -1 0 1 2 3 4 5 6 7 10 10 10 10 10 10 10 10 10 10 Freq. [Hz] -13 10 -2 -1 0 1 2 3 4 5 6 7 10 10 10 10 10 10 10 10 10 10 Freq. [Hz] The effect of the dynamic of the polymer on the conductivity is confirmed by the relaxation process observed in some composites 1E-5 1E-7 Eng + 1.0 SWNT Eng + 1,0 SWNT original Eng + 1,0 SWNT ann 3 hrs 3 hrs annealing 140 C 1E-8 1E-9 1E-11 1E-10 1E-11 1E-12 -2 -1 0 1 2 3 4 5 6 10 10 10 10 10 10 10 10 10 Freq. [Hz] 1E-5 1E-6 1E-8 1E-9 1E-13 -2 -1 0 1 2 3 4 5 6 7 10 10 10 10 10 10 10 10 10 10 Freq. [Hz] 1E-4 Eng + 0.05 SWNT 1E-7 S (S/cm) 1E-9 3 hrs annealing 140 C Eng + 1,0 SWNT original Eng + 1,0 SWNT ann 3 hrs 1E-6 S'' (S/cm) S (S/cm) 1E-7 S' (S/cm) 1E-6 1E-8 1E-10 1E-12 1E-10 1E-11 1E-12 -2 -1 0 1 2 3 4 5 6 10 10 10 10 10 10 10 10 10 Freq. [Hz] 1E-14 -2 -1 0 1 2 3 4 5 6 7 10 10 10 10 10 10 10 10 10 10 Freq. [Hz] Eng8450 Effect of the temperature 1E-6 S (S/cm) 1E-7 120 C 140 C 190 C 1E-8 1E-9 1E-10 1E-11 -2 -1 0 1 2 3 4 5 6 7 10 10 10 10 10 10 10 10 10 10 Frequency (Hz) Annealing Studies for some Eng/MWNT samples Effect of the amount of filler -4 1,0x10 -10 |Sig| [S/cm] |Sig| [S/cm] 1,0x10 Pure Eng -11 12% MWNT -5 1,0x10 1,0x10 1Hz 1% MWNT -12 1,0x10 0 5000 10000 15000 -6 1,0x10 0 Time [s] 1E-3 -5 10 |Sig| [S/cm] 1% MWNT before annealing |Sig| [S/cm] 1% MWNT after annealing -6 10 5000 10000 Time [s] 15000 |Sig| [S/cm] before annealing 12WNT |Sig| [S/cm] after annealing 12WNT -7 Sigma (S/cm) Sigma (S/cm) 10 -8 10 -9 10 -10 10 -11 10 1E-4 1E-5 -12 10 -13 10 -2 -1 0 1 2 3 4 5 6 10 10 10 10 10 10 10 10 10 Frequency (Hz) 1E-6 -2 -1 0 1 2 3 4 5 6 7 10 10 10 10 10 10 10 10 10 10 Frequency (Hz) Annealing Studies for some Eng samples Effect of the kind of filler -10 -9 1,0x10 1% MWNT |Sig| [S/cm] |Sig| [S/cm] 1,0x10 -11 1,0x10 1% SWNT -10 1,0x10 -11 1,0x10 -12 1,0x10 0 5000 10000 15000 0 Time [s] -4 -5 10 |Sig| [S/cm] 1% MWNT before annealing |Sig| [S/cm] 1% MWNT after annealing -6 10 -7 Sigma (S/cm) Sigma (S/cm) 10 -8 10 -9 10 -10 10 -11 10 -12 10 -13 10 -2 -1 0 1 2 3 4 5 6 10 10 10 10 10 10 10 10 10 Frequency (Hz) 5000 10000 Time [s] 15000 10 |Sig| [S/cm] before annealing 1% SWNT -5 |Sig| [S/cm] after annealing 1% SWNT 10 -6 10 -7 10 -8 10 -9 10 -10 10 -11 10 -12 10 -13 10 -2 -1 0 1 2 3 4 5 6 7 10 10 10 10 10 10 10 10 10 10 Frequency (Hz) Annealing Studies for some Eng samples Effect of the kind of matrix -11 -11 1,0x10 |Sig| [S/cm] |Sig| [S/cm] 1,0x10 Eng 1% MWNT -12 1,0x10 PE3732C 1% MWNT -12 1,0x10 -13 1,0x10 -13 0 5000 10000 15000 1,0x10 0 5000 Time [s] 10000 15000 Time [s] -5 10 |Sig| [S/cm] 1% MWNT before annealing |Sig| [S/cm] 1% MWNT after annealing -6 10 -5 10 -7 -8 10 -7 10 Sigma (S/cm) Sigma (S/cm) 10 -9 10 -10 10 -11 10 -12 10 -8 10 -9 10 -10 10 -11 10 -12 10 -13 10 |Sig| [S/cm] before annealing 1WNT |Sig| [S/cm] after annealing 1WNT -6 10 -2 -1 0 1 2 3 4 5 6 10 10 10 10 10 10 10 10 10 Frequency (Hz) -13 10 -2 -1 0 1 2 3 4 5 6 10 10 10 10 10 10 10 10 10 Frequency (Hz) Annealing Studies for some Eng samples Effect of the kind of matrix Eng 12% MWNT |Sig| [S/cm] 1,0x10 -7 1,0x10 -4 1,0x10 1Hz |Sig| [S/cm] -3 -5 PE3732C 12% MWNT -8 1,0x10 -9 1,0x10 1,0x10 -10 1,0x10 0 -6 1,0x10 Sigma (S/cm) 1E-3 5000 10000 Time [s] 15000 1E-5 |Sig| [S/cm] before annealing 12WNT |Sig| [S/cm] after annealing 12WNT 1E-4 1E-5 5000 10000 Time [s] 15000 |Sig| [S/cm] before annealing PE 12% MWNT |Sig| [S/cm] after annealing PE 12% MWNT 1E-6 Sigma (S/cm) 0 1E-7 1E-8 1E-9 1E-10 1E-6 -2 -1 0 1 2 3 4 5 6 7 10 10 10 10 10 10 10 10 10 10 Frequency (Hz) 1E-11 -2 -1 0 1 2 3 4 5 6 10 10 10 10 10 10 10 10 10 Frequency (Hz) Annealing Studies for some Eng samples Effect of the kind of matrix |Sig| [S/cm] -9 1,0x10 PE3732C 1% SWNT -12 1,0x10 -10 1,0x10 -11 1,0x10 -13 1,0x10 0 5000 10000 Time [s] 0 15000 -5 10 -5 10 -6 10 -7 10 -8 10 -9 10 -10 10 -11 10 -12 10 -13 10 -2 -1 0 1 2 3 4 5 6 7 10 10 10 10 10 10 10 10 10 10 Frequency (Hz) Sigma (S/cm) -4 Sigma (S/cm) |Sig| [S/cm] -11 1,0x10 Eng 1% SWNT 5000 10000 Time [s] 15000 10 -6 10 -7 10 -8 10 -9 10 -10 10 -11 10 -12 10 -13 10 -14 10 -2 -1 0 1 2 3 4 5 6 7 10 10 10 10 10 10 10 10 10 10 Frequency (Hz) Eng8450 + MWNT Effect of the strain on the composite dynamic 2E-12 Shear strain 100% S (S/cm) 1,9E-12 Stop Shear strain 1,8E-12 0.5 % MWNT 1,7E-12 1,6E-12 1 Hz 1,5E-12 0 500 1000 Time [s] 1500 The system is not able to relax during the shear-strain of 300% Small relaxation during shear-strain of 100% 1% MWNT 1,6E-12 1,6E-12 Shear strain 10% stop strain Shear strain 100% S (S/cm) S (S/cm) 1,2E-12 1E-12 300% strain 1,4E-12 1,4E-12 1,2E-12 1 Hz 1E-12 1 Hz Stop strain 8E-13 8E-13 0 1000 2000 Time [s] 3000 0 1000 2000 Time [s] 3000 Eng8450 + MWNT Effect of the strain on the composite dynamic 3% MWNT 1E-6 1E-6 Shear strain 300% 1E-7 Stop shear strain 1E-8 1E-9 100 Hz 0 1500 3000 4500 6000 Time [s] 1E-4 S (S/cm) 1E-5 Original 2 hrs and strain 100% 2 hrs and strain 300 1E-6 1E-7 S (S/cm) S (S/cm) Shear strain 100% 1E-7 Stop shear strain 1E-8 1E-9 0 1500 3000 4500 6000 7500 Time [s] The shear-strain disrupt the conductivity but only in the beginning, after that the system relax independent of the strain!!!! At this condition the kinetic of the relaxation is modified by the external forces 1E-8 1E-9 -2 -1 0 1 2 3 4 5 6 10 10 10 10 10 10 10 10 10 Freq. [Hz] The location of this peak is shear-strain dependent!!! Eng8450 + MWNT Effect of the strain on the composite dynamic 6% MWNT -5 10 -5 10 300% shear strain Shear strain 100% -6 Stop Shear strain -7 10 S (S/cm) S (S/cm) -6 10 10 Stop shear strain -7 10 100 Hz 100 Hz -8 10 -8 0 1500 3000 4500 Time [s] 6000 10 0 1500 3000 4500 Time [s] 1E-3 S (S/cm) 1E-4 original strain 100, 3 hrs strain 300, 3 hrs 1E-5 1E-6 1E-7 -2 -1 0 1 2 3 4 5 6 7 10 10 10 10 10 10 10 10 10 10 Freq. [Hz] It is clear that the drop in conductivity depends of the shear-strain, and again the system is able to relax independent of the shear-strain!!!! Eng8450 + MWNT Effect of the strain on the composite dynamic 12% MWNT Shear-strain 5% 1E-4 1E-4 S (S/cm) S (S/cm) Shear-strain 10% Stop Shear-strain 0 1E-4 1000 2000 3000 Time [s] 4000 5000 S (S/cm) Shear-strain 50% 0 1000 2000 3000 Time [s] 0 1000 2000 3000 Time [s] 4000 5000 4000 5000 Shear-strain 100% 1E-4 Stop Shear-strain 1E-5 1E-5 S (S/cm) 1E-5 Stop Shear-strain Stop Shear-strain 1E-5 0 1000 2000 3000 Time [s] 4000 5000 Eng8450 + MWNT Effect of the strain on the composite dynamic 12% MWNT -2 10 Shear-strain 300% 1E-4 original 6 hrs annealing and shear strain -3 S (S/cm) S (S/cm) 10 10 Hz -4 10 -5 10 Stop Shear-strain -6 10 0 1000 2000 3000 Time [s] 4000 -1 10 5 strain 10 strain 50 strain 100 strain 300 strain 0 1000 2000 3000 4000 5000 Time [s] 0 10 1E-4 1 0,1 -2 10 5000 1 2 3 10 10 10 Freq. [Hz] 5% 50% 4 10 5 10 6 10 100% 300% 10% S (S/cm) Normalized conductivity 1E-5 1E-5 0 5000 10000 15000 20000 25000 Time [s] Eng8450 + SWNT Effect of the strain on the composite dynamic 0.05% SWNT 1,28E-011 1E-5 Shear strain 100% S (S/cm) 1,24E-011 1E-6 1E-7 S (S/cm) 1,20E-011 Stop shear strain 1,16E-011 10 Hz 0 200 400 600 800 1000 1200 Time [s] 1E-8 1E-9 1E-10 1E-11 1,12E-011 1E-12 -2 -1 0 1 2 3 4 5 6 10 10 10 10 10 10 10 10 10 Freq. [Hz] 1.0% SWNT 1E-5 1E-9 1E-6 1E-11 1E-12 1 Hz 0 2000 original annealing 3 hrs and strain 1E-7 1E-10 Shear strain 100% S (S/cm) S (S/cm) original Annealing 3 hrs and strain 1E-8 1E-9 1E-10 Stop shear strain 1E-11 4000 1E-12 -2 -1 0 1 2 3 4 5 6 10 10 10 10 10 10 10 10 10 Frequency (Hz) 6000 Time [s] 8000 PE3732C + MWNT Sample annealed 15 minutes in the press (140 C) Around 30 minutes between put the sample in the equipment and to start the experiment -5 10 -6 10 -7 10 Same behavior than Eng sample, the changes are related with the resistor contribution S (S/cm) -8 10 -9 10 PE PE + 0,05% MWNT PE + 0,1% MWNT PE + 0,5% MWNT PE + 1,0% MWNT PE + 3,0% MWNT PE + 6,0% MWNT PE + 12,0% MWNT -10 10 -11 10 -12 10 -13 10 -2 -1 0 1 2 3 4 5 6 7 10 10 10 10 10 10 10 10 10 10 -5 Frequency (Hz) 10 -5 -6 10 -7 10 S' (S/cm) 10 -9 10 -10 10 S'' (S/cm) PE PE + 0,05WNT PE + 0,1% MWNT PE + 0,5% MWNT PE + 1,0% MWNT PE + 3,0% MWNT PE + 6,0% MWNT PE + 12,0% MWNT -8 -11 10 -12 10 -13 10 -2 -1 0 1 2 3 4 5 6 7 10 10 10 10 10 10 10 10 10 10 Frequency (Hz) 10 -6 10 -7 10 -8 10 -9 10 -10 PE 10 PE + 0,05% MWNT PE + 0,1% MWNT -11 10 PE + 0,5% MWNT PE + 1,0% MWNT -12 10 PE + 3,0% MWNT PE + 6,0% MWNT -13 PE + 12,0% MWNT 10 -14 10 -2 -1 0 1 2 3 4 5 6 7 10 10 10 10 10 10 10 10 10 10 Frequency (Hz) PE3732C + SWNT Sample annealed 15 minutes in the press (140 C) Around 30 minutes between put the sample in the -5 equipment and to start the experiment 10 PE PE + 0,05% SWNT PE + 0,1% SWNT PE + 0,5% SWNT PE + 1,0% SWNT -6 10 -7 10 S (S/cm) -8 10 -9 10 -10 10 -11 10 -12 10 -13 10 -9 10 PE PE + 0,05% SWNT PE + 0,1% SWNT PE + 0,5% SWNT PE + 1,0% SWNT -10 -1 0 1 3 4 -11 -12 10 -13 -2 -1 0 1 5 -6 10 10 2 S'' (S/cm) S' (S/cm) 10 -2 6 7 10 10 10 10 10 10 10 10 10 10 Frequency (Hz) 10-5 2 3 4 5 6 7 10 10 10 10 10 10 10 10 10 10 Frequency (Hz) PE 10 PE + 0,05% SWNT -7 PE + 0,1% SWNT 10 PE + 0,5% SWNT -8 PE + 1,0% SWNT 10 -9 10 -10 10 -11 10 -12 10 -13 10 -14 10 -2 -1 0 1 2 3 4 5 6 7 10 10 10 10 10 10 10 10 10 10 Frequency (Hz) PE3732C + MWNT Effect of the processing on the composite dynamic 6% MWNT -5 10 PE original PE + 6,0% MWNT original PE + 6,0% MWNT no-aligned -6 10 -7 10 S (S/cm) -8 10 -9 10 -10 10 -11 10 -12 10 -13 10 -2 -1 0 1 2 3 4 5 6 7 10 10 10 10 10 10 10 10 10 10 Frequency (Hz) This plot shows that the decrease in the conductivity is associated with the morphology of CNTs in the polymeric matrix PE3732C + MWNT Effect of the strain on the composite dynamic 0.05% SWNT 1% MWNT 1,2E-12 Shear strain 50% 6,99E-12 |Sig| [S/cm] strain 10 and 100% |Sig| [S/cm] strain 200 6,96E-12 6,93E-12 Stop Shear strain S (S/cm) S (S/cm) 1,1E-12 1E-12 9E-13 10 Hz 6,9E-12 0 1000 2000 Time [s] 1% SWNT 1,2E-12 1,1E-12 1E-12 1000 2000 Time [s] 3000 10% strain 100% strain 200% strain |Sig| [S/cm] 1WNT 10 and 100% strain |Sig| [S/cm] strain 200% 1WNT 6% MWNT -11 4,0x10 8E-13 S(S/cm) S (S/cm) 0 -11 6,0x10 9E-13 7E-13 6E-13 5E-13 8E-13 3000 -11 2,0x10 0 1000 2000 Time [s] 3000 0 1000 2000 Time [s] 3000 4000 PE3732C + MWNT 6% MWNT -5 -11 10 6,0x10 |Sig| [S/cm] PE 6WNT ann 1 |Sig| [S/cm] PE 6% MWNT antes ann |Sig| [S/cm] PE 6WNT after strain -6 10 -11 4,0x10 Sigma (S/cm) -7 -11 S(S/cm) 2,0x10 10 -8 10 -9 10 -10 10 -11 10 -12 0 1000 2000 3000 4000 5000 6000 Time [s] 10 -2 -1 0 1 2 3 4 5 6 10 10 10 10 10 10 10 10 10 Frequency (Hz) PE3732C + MWNT Effect of the strain on the composite dynamic 12% MWNT 5E-7 Stop shear strain 4E-7 shear strain 50% S (S/cm) 3E-7 2E-7 shear strain 10% Stop shear strain 1000 Hz 1E-7 0 1000 2000 Time [s] 3000 4000 PE3732C + MWNT Effect of the strain on the composite dynamic 12% MWNT -5 10 -7 1,0x10 |Sig| [S/cm] after ann 12WNT |Sig| [S/cm] after strain 10% 12WNT |Sig| [S/cm] after strain 100% 12WNT 10% strain -6 10 -8 Sigma (S/cm) S(S/cm) 1,0x10 100% strain -9 1,0x10 -10 1,0x10 |Sig| [S/cm] strain 10% 12WNT |Sig| [S/cm] strain 100% 12WNT -7 10 -8 10 -9 10 -11 1,0x10 0 1000 2000 3000 Time [s] -7 1,0x10 100% strain, 1 min -2 -1 0 1 2 3 -8 S(S/cm) -9 Effect of time 100% strain, 20 min -10 1,0x10 -11 1,0x10 0 1000 2000 3000 4000 5000 6000 Time [s] 5 6 Strain-induced insulation!!! 1,0x10 1,0x10 4 10 10 10 10 10 10 10 10 10 Frequency (Hz) PE3732C + SWNT Effect of the strain on the composite dynamic 0.05% SWNT Shear strain 50% 6,96E-12 6,93E-12 Stop Shear strain 10 Hz 6,9E-12 0 1000 2000 Time [s] 3000 1E-6 1E-7 original annealing 1 hr and strain 1E-8 S (S/cm) S (S/cm) 6,99E-12 1E-9 1E-10 1E-11 1E-12 1E-13 -2 -1 0 1 2 3 4 5 6 10 10 10 10 10 10 10 10 10 Frequency (Hz)
© Copyright 2026 Paperzz