1 . The J-QPD-S (Semi-Bounded) Distributions
Let l denote a specified finite lower bound of support, and let {x , x0.5 , x1 } denote a specified symmetric
percentile triplet for some given (0, 0.5) . For example, {x0.1 , x0.5 , x0.9 } corresponds to the {10th, 50th,
90th} percentiles. Finally, let ϕ, Ф, and Ф-1 denote the PDF, CDF, and quantile function for the standard
normal distribution, respectively. The quantile function, CDF, and PDF for the J-QPD-S distribution
parameterized by (l , x , x0.5 , x1 ) are given as follows:
1.1 Standard Parameterizations
Quantile Function
QS ( p) l exp sinh sinh 1 1 ( p) sinh 1 (nc ) .
Cumulative Distribution Function (CDF)
1
1 x l
1
FS ( x) sinh sinh 1 log
sinh nc .
Probability Density Function (PDF)
xl
log
1
1
f S ( x)
k nc
( x l )
2
2 x l
log
where,
c 1 (1 ) ,
L log( x l ), B log( x0.5 l ), H log( x1 l ),
n sgn( L H 2 B ),
x l , n 1
x0.50 l , n 0 ,
x l , n 1
1
1
H L
sinh cosh 1
,
c
2min( B L, H B)
1
min( H B, B L),
c
k 1 (c ) 2 .
1
x l
2
2 x l
k
log
nc
log
.
1.2 Alternative (“Expanded”) Parameterizations
Alternatively, “expanding out” the hyperbolic functions in the expressions above gives the following
alternative forms for the J-QPD-S quantile function and CDF1:
Quantile Function
2
QS ( p) l exp k 1 ( p) nc 1 1 ( p) .
Cumulative Distribution Function (CDF)
1
FS ( x)
x l
2
2 x l
k log
nc log
.
1.3 Special Case
The lognormal distributions occur as a special case of the J-QPD-S distributions. Specifically, for the
special case in which L+H–2B=0, we have n sgn( L H 2 B ) sgn(0) 0 , and thus:
QS ( p) l exp sinh sinh 1 1 ( p) l exp 1 ( p) ,
1
FS ( x)
x l
log
,
1
1
f S ( x)
( x l )
x l
log
.
This corresponds to a lognormal distribution with parameters, μ = log(θ) and σ = λδ, and shifted to have
support on (l, ∞).
2 . The J-QPD-B (Bounded) Distributions
Let l and u denote specified finite lower and upper bounds of support, respectively, and let {x , x0.5 , x1 }
denote a specified symmetric percentile triplet for some given (0, 0.5) . For example, {x0.1 , x0.5 , x0.9 }
corresponds to the {10th, 50th, 90th} percentiles. Finally, let ϕ, Ф, and Ф-1 denote the PDF, CDF, and quantile
function for the standard normal distribution, respectively. The quantile function, CDF, and PDF for the JQPD-B distribution parameterized by (l , x , x0.5 , x1 , u ) are given as follows:
Quantile Function
QB ( p) l (u l ) sinh 1 ( p) nc .
Cumulative Distribution Function (CDF)
1
1
xl
FB ( x) sinh 1 1
nc .
u l
1
The PDF is already in expanded form.
5/24/2017
2
Probability Density Function (PDF)
f B ( x)
1
1
x l
nc sinh 1 1
u l
2
x l 1 x l
(u l ) 1
u l
u l
2
where,
c 1 (1 ) ,
x l
x l
x l
L 1
, B 1 0.50
, H 1 1
,
u l
u l
u l
n sgn( L H 2 B ),
L, n 1
= B, n 0
H , n 1
1
H L
cosh 1
,
c
2 min( B L, H B)
H L
.
sinh(2 c)
2.1 Special Case
For the special case in which n = 0, the quantile function, CDF, and PDF for J-QPD-B are given by:
H L 1
QB ( p) l (u l ) B
( p) ,
2c
2c
1 x l
FB ( x)
B
,
u l
H L
2c
1 x l
2c
B
u l
H L
f B ( x)
.
1 x l
( H L)(u l )
u l
5/24/2017
3
© Copyright 2026 Paperzz