40685_2016_35_MOESM1_ESM

An Economic Decision Model for Determining the
Appropriate Level of Business Process Standardization (Appendix)
A
A.1
BPS and Profit Margin
Linear Approximation of the Experience Curve
The process costs ๐ถ0 at the decision point can be calculated by inserting the cumulated demand
๐ท0,cum up to the decision point into the function of Hendersonโ€™s Law from Equation (5):
โˆ’๐‘Ž
๐ถ0 = ๐ถ(๐ท0,cum , ๐‘Ž) = ๐พ(๐ท0,cum )
(Eq. A.1.1)
We apply the tangent of Equation (A.1.1) to linearly approximate the development of the process costs
over the planning horizon. To derive the tangent, we must determine its slope and its tangent point. The
slope of the tangent is determined as follows:
๐ถ โ€ฒ (๐ท0,cum , ๐‘Ž) =
for ๐‘Žฬƒ: =
๐œ•๐ถ(๐ท0,cum , ๐‘Ž)
โˆ’๐‘Žโˆ’1
= โˆ’๐‘Ž๐พ(๐ท0,cum )
= โˆ’๐‘Žฬƒ๐พ๐ท0,cum โˆ’๐‘Ž
๐œ•๐ท0,cum
(Eq. A.1.2)
๐‘Ž
๐ท0,cum
The tangent point equals the costs at the decision point and can be directly observed:
๐ถ(๐ท0,cum , ๐‘Ž) = ๐พ๐ท0,cum โˆ’๐‘Ž = ๐ถ0
(Eq. A.1.3)
In the approximated version of Hendersonโ€™s Law, the process costs linearly decrease in the cumulated
std
demand ๐ท๐‘ก,cum
that has been reached starting from the decision point as shown in Equation (A.1.4)
std
std
std
๐ถ(๐ท๐‘ก,cum
, ๐‘Ž) = ๐พ๐ท0,cum โˆ’๐‘Ž โˆ’๐‘Žฬƒ๐พ๐ท0,cum โˆ’๐‘Ž โˆ™ ๐ท๐‘ก,cum
= ๐ถ0 โˆ’ ๐ถ0 ๐‘Žฬƒ๐ท๐‘ก,cum
A.2
(Eq. A.1.4)
Demand-Weighted ProfitMargin
The profit margin ๐‘€๐‘ฃ,๐‘ก of a process variant ๐‘ฃ in period ๐‘ก equals the difference between the sales price
๐‘ƒ๐‘ฃ and the process costs ๐ถ๐‘ฃ,๐‘ก in that period, as shown in Equation (A.2.1).
๐‘€๐‘ฃ,๐‘ก = ๐‘ƒ๐‘ฃ โˆ’ ๐ถ๐‘ฃ,๐‘ก
(Eq. A.2.1)
For the process costs, we can use the linearly approximated experience curve from Equation (6). Of
std
course, the process costs depend only on the cumulated demand ๐ท๐‘ก,๐‘ฃ,cum
covered by that process variant
std
under consideration and not on the complete cumulated demand ๐ท๐‘ก,cum
.
std
๐‘€๐‘ฃ,๐‘ก = ๐‘ƒ๐‘ฃ โˆ’ ๐ถ๐‘ฃ,0 + ๐ถ๐‘ฃ,0 ๐‘Žฬƒ๐ท๐‘ก,๐‘ฃ,cum
1
(Eq. A.2.2)
We now apply the assumption (A.2) of the constant demand weights and replace the cumulated demand
std
๐ท๐‘ก,๐‘ฃ,cum
that was covered by process variant ๐‘ฃ starting from the decision point by the complete cumu-
lated demand adjusted by the respective demand weight ๐‘ค๐‘ฃstd.
std
๐‘€๐‘ฃ,๐‘ก = ๐‘ƒ๐‘ฃ โˆ’ ๐ถ๐‘ฃ,0 + ๐ถ๐‘ฃ,0 ๐‘Žฬƒ ๐‘ค๐‘ฃstd ๐ท๐‘ก,cum
(Eq. A.2.3)
The demand-weighted periodic profit margin ๐‘€๐‘ก equals the demand-weighted variant-specific profit
margins ๐‘€๐‘ฃ,๐‘ก in period ๐‘ก, as shown in Equation (A.2.4).
๐‘›
๐‘›
std
๐‘€๐‘ก = โˆ‘ ๐‘ค๐‘ฃstd ๐‘€๐‘ฃ,๐‘ก = โˆ‘ ๐‘ค๐‘ฃstd (๐‘ƒ๐‘ฃ โˆ’ ๐ถ๐‘ฃ,0 + ๐ถ๐‘ฃ,0 ๐‘Žฬƒ๐‘ค๐‘ฃstd ๐ท๐‘ก,cum
)
๐‘ฃ=0
๐‘ฃ=0
๐‘›
2
std
= โˆ‘ [๐‘ค๐‘ฃstd (๐‘ƒ๐‘ฃ โˆ’ ๐ถ๐‘ฃ,0 ) + ๐ถ๐‘ฃ,0 ๐‘Žฬƒ๐ท๐‘ก,cum
(๐‘ค๐‘ฃstd ) ]
๐‘ฃ=0
๐‘›
=โˆ‘
๐‘ค๐‘ฃstd (๐‘ƒ๐‘ฃ
โˆ’ ๐ถ๐‘ฃ,0 ) +
๐‘ฃ=0
๐‘›
2
std
๐‘Žฬƒ๐ท๐‘ก,cum โˆ‘(๐‘ค๐‘ฃstd ) ๐ถ๐‘ฃ,0
๐‘ฃ=0
= ๐‘€0
(Eq. A.2.4)
std
+ ๐‘Žฬƒ๐ท๐‘ก,cum
๐บcost
๐‘›
for ๐‘€0 โ‰” โˆ‘
๐‘›
๐‘ค๐‘ฃstd
๐‘ฃ=0
B
B.1
2
(๐‘ƒ๐‘ฃ โˆ’ ๐ถ๐‘ฃ,0 ) and ๐บcost โ‰” โˆ‘ (๐‘ค๐‘ฃstd ) ๐ถ๐‘ฃ,0
๐‘ฃ=0
Application of Andersonโ€™s Model (1994)
Linear Extrapolation for Process Quality (as an example)
As the two reference points (๐‘ฅ1 ; ๐‘ฆ1 ) and (๐‘ฅ2 ; ๐‘ฆ2 ) required to set up a linear extrapolation, we use the
status quo and the case of complete standardization.
Reference point 1: ๐‘ฆ1 = ๐‘„, ๐‘ฅ1 = ๐บ
Reference point 2: ๐‘ฆ2 = (1 + ๐‘ ๐‘„ ) โˆ™ ๐‘„, ๐‘ฅ2 = 1
Based on these reference points, we can set up the linear extrapolation as shown in Equation (B.1.1).
๐‘ฆ(๐‘ฅ) =
๐‘ฆ2 โˆ’ ๐‘ฆ1
(๐‘ฅ โˆ’ ๐‘ฅ1 ) + ๐‘ฆ1
๐‘ฅ2 โˆ’ ๐‘ฅ1
(Eq. B.1.1)
The relationship between the Gini coefficient of a distinct process variant profile after BPS ๐บ std (= ๐‘ฅ)
and the associated process quality ๐‘„(๐บ std )) (= ๐‘ฆ(๐‘ฅ)) can be determined by inserting the reference
points into Equation (B.1.1) as shown in Equation (B.1.2):
๐‘„(๐บ std ) =
๐‘„ โˆ™ (1 + ๐‘ ๐‘„ ) โˆ’ ๐‘„
๐‘„ โˆ™ ๐‘ ๐‘„
โˆ†๐บ + ๐‘„,
(๐บ std โˆ’ ๐บ) + ๐‘„ =
1โˆ’๐บ
1โˆ’๐บ
for โˆ†๐บ โ‰” (๐บ std โˆ’ G)
The change in process quality for a given Gini coefficient ๐บ std after BPS equals:
2
(Eq. B.1.2)
๐‘„(๐บ std ) โˆ’ ๐‘„ =
๐‘„ โˆ™ ๐‘ ๐‘„
๐‘„ โˆ™ ๐‘ ๐‘„
โˆ†๐บ + ๐‘„ โˆ’ ๐‘„ =
โˆ†๐บ
1โˆ’๐บ
1โˆ’๐บ
(Eq. B.1.3)
The resulting relative change of process quality for a given Gini coefficient ๐บ std after BPS compared to
the status quo prior to BPS is shown in Equation (B.1.4).
๐‘„ โˆ™ ๐‘ ๐‘„
๐‘ ๐‘„
๐‘„(๐บ std ) โˆ’ ๐‘„ 1 โˆ’ ๐บ โˆ†๐บ
โˆ†๐‘„(๐บ) =
=
=
โˆ†๐บ
๐‘„
๐‘„
1โˆ’๐บ
B.2
(Eq. B.1.4)
Changes in Customer Satisfaction for a Given Gini Coefficient
According to Andersonโ€™s model of customer satisfaction and retention, the customer satisfaction ๐‘†๐ด๐‘‡
prior to BPS and after BPS can be expressed as shown in Equations (B.2.1) and (B.2.2).
๐‘†๐ด๐‘‡ = ๐›ผ๐‘†๐ด๐‘‡ + ๐›ฝ๐‘„ ๐‘„ + ๐›ฝ๐ธ๐‘‹๐‘ƒ ๐ธ๐‘‹๐‘ƒ + ๐›ฝ๐‘๐ถ๐ท ๐‘๐ถ๐ท + ๐›ฝ๐‘ƒ๐ถ๐ท ๐‘ƒ๐ถ๐ท + ๐œ€
(Eq. B.2.1)
๐‘†๐ด๐‘‡(๐บ std ) = ๐›ผ๐‘†๐ด๐‘‡ + ๐›ฝ๐‘„ ๐‘„(๐บ std ) + ๐›ฝ๐ธ๐‘‹๐‘ƒ ๐ธ๐‘‹๐‘ƒ + ๐›ฝ๐‘๐ถ๐ท ๐‘๐ถ๐ท(๐บ std ) + ๐›ฝ๐‘ƒ๐ถ๐ท ๐‘ƒ๐ถ๐ท(๐บ std )
(Eq. B.2.2)
+๐œ€
We can now insert the derived functions for the model parameters given the Gini coefficient ๐บ std as
shown in Equation (B.2.3).
๐‘ ๐‘„
๐‘†๐ด๐‘‡(๐บ std ) = ๐›ผ๐‘†๐ด๐‘‡ + ๐›ฝ๐‘„ ๐‘„ (
โˆ†๐บ + 1) + ๐›ฝ๐ธ๐‘‹๐‘ƒ ๐ธ๐‘‹๐‘ƒ
1โˆ’๐บ
๐‘ ๐‘„ + ๐‘ ๐‘‡
๐‘ ๐‘„ + ๐‘ ๐‘‡
+ ๐›ฝ๐‘๐ถ๐ท ๐‘๐ถ๐ท (โˆ’
โˆ†๐บ + 1) + ๐›ฝ๐‘ƒ๐ถ๐ท ๐‘ƒ๐ถ๐ท (
โˆ†๐บ + 1)
1โˆ’๐บ
1โˆ’๐บ
(Eq. B.2.3)
+๐œ€
Based on these intermediate results, we can calculate the changes in customer satisfaction โˆ†๐‘†๐ด๐‘‡(๐บ std )
for a given Gini coefficient ๐บ std after BPS as shown in Equation (B.2.4). The result can be found in
Equation (13) in the manuscript.
โˆ†๐‘†๐ด๐‘‡(๐บ std ) = ๐‘†๐ด๐‘‡(๐บ std ) โˆ’ ๐‘†๐ด๐‘‡
๐‘ ๐‘„
= ๐›ผ๐‘†๐ด๐‘‡ โˆ’ ๐›ผ๐‘†๐ด๐‘‡ + ๐›ฝ๐‘„ ๐‘„ (
โˆ†๐บ + 1) โˆ’ ๐›ฝ๐‘„ ๐‘„ + ๐›ฝ๐ธ๐‘‹๐‘ƒ ๐ธ๐‘‹๐‘ƒ
1โˆ’๐บ
๐‘ ๐‘‡ + ๐‘ ๐‘„
โˆ’ ๐›ฝ๐ธ๐‘‹๐‘ƒ ๐ธ๐‘‹๐‘ƒ + ๐›ฝ๐‘๐ถ๐ท ๐‘๐ถ๐ท (โˆ’
โˆ†๐บ + 1) โˆ’ ๐›ฝ๐‘๐ถ๐ท ๐‘๐ถ๐ท
1โˆ’๐บ
๐‘ ๐‘‡ + ๐‘ ๐‘„
+ ๐›ฝ๐‘ƒ๐ถ๐ท ๐‘ƒ๐ถ๐ท (
โˆ†๐บ + 1) โˆ’ ๐›ฝ๐‘ƒ๐ถ๐ท ๐‘ƒ๐ถ๐ท + ๐œ€ โˆ’ ๐œ€
1โˆ’๐บ
๐‘ ๐‘„
๐‘ ๐‘‡ + ๐‘ ๐‘„
= ๐›ฝ๐‘„ (๐‘„
โˆ†๐บ) + ๐›ฝ๐‘๐ถ๐ท (โˆ’๐‘๐ถ๐ท
โˆ†๐บ)
1โˆ’๐บ
1โˆ’๐บ
๐‘ ๐‘‡ + ๐‘ ๐‘„
+ ๐›ฝ๐‘ƒ๐ถ๐ท (๐‘ƒ๐ถ๐ท
โˆ†๐บ)
1โˆ’๐บ
3
(Eq. B.2.4)
B.3
Changes in the Retention Rate for a Given Gini Coefficient
According to Andersonโ€™s model, the retention rate ๐‘Ÿ prior to BPS and after BPS can be expressed as
shown in Equations (B.3.1) and (B.3.2).
๐‘Ÿ = ๐›ผ๐‘Ÿ + ๐›ฝ๐‘†๐ด๐‘‡ (๐‘†๐ด๐‘‡) + ๐œ€
(Eq. B.3.1)
๐‘Ÿ(๐บ std ) = ๐›ผ๐‘Ÿ + ๐›ฝ๐‘†๐ด๐‘‡ ๐‘†๐ด๐‘‡(๐บ std ) + ๐œ€
(Eq. B.3.2)
Based on this intermediate result, we can calculate the changes in retention rate โˆ†๐‘Ÿ(๐บ std ) for a given
Gini coefficient ๐บ std after BPS as shown in Equation (B.3.3).
โˆ†๐‘Ÿ(๐บ std ) = ๐‘Ÿ(๐บ std ) โˆ’ ๐‘Ÿ = ๐›ผ๐‘Ÿ โˆ’ ๐›ผ๐‘Ÿ + ๐›ฝ๐‘†๐ด๐‘‡ (๐‘†๐ด๐‘‡(๐บ std ) โˆ’ ๐‘†๐ด๐‘‡) + ๐œ€ โˆ’ ๐œ€
= ๐›ฝ๐‘†๐ด๐‘‡ โˆ†๐‘†๐ด๐‘‡(๐บ std )
= ๐›ฝ๐‘†๐ด๐‘‡ (๐›ฝ๐‘„ (Q
+ ๐›ฝ๐‘ƒ๐ถ๐ท (๐‘ƒ๐ถ๐ท
๐‘ ๐‘„
๐‘ ๐‘‡ + ๐‘ ๐‘„
โˆ†๐บ) + ๐›ฝ๐‘๐ถ๐ท (โˆ’๐‘๐ถ๐ท
โˆ†๐บ)
1โˆ’๐บ
1โˆ’๐บ
๐‘ ๐‘‡ + ๐‘ ๐‘„
โˆ†๐บ))
1โˆ’๐บ
(Eq. B.3.3)
๐‘ ๐‘„
๐‘ ๐‘‡ + ๐‘ ๐‘„
โˆ†๐บ) + ๐›ฝ๐‘†๐ด๐‘‡ ๐›ฝ๐‘๐ถ๐ท (โˆ’๐‘๐ถ๐ท
โˆ†๐บ)
1โˆ’๐บ
1โˆ’๐บ
๐‘ ๐‘‡ + ๐‘ ๐‘„
+ ๐›ฝ๐‘†๐ด๐‘‡ ๐›ฝ๐‘ƒ๐ถ๐ท (๐‘ƒ๐ถ๐ท
โˆ†๐บ)
1โˆ’๐บ
= ๐›ฝ๐‘†๐ด๐‘‡ ๐›ฝ๐‘„ (Q
C
C.1
Objective Function
Simplification of the Cumulated Process Demand
std
The cumulated process demand ๐ท๐‘ก,cum
after BPS in period ๐‘ก can be defined as the sum of the periodic
process demands ๐ท๐‘กstd up to period ๐‘ก as shown in Equation (C.1.1).
๐‘ก
std
๐ท๐‘ก,cum
= โˆ‘ ๐ท๐‘—std
(Eq. C.1.1)
๐‘—=0
๐‘—
With ๐ท๐‘— = ๐ท0 (1 + ๐œ‡๐ทstd ) + ๐œŽ๐‘๐‘— for ๐‘๐‘— ~๐‘(0,1) and ๐ท๐‘—std = ๐›ฟ๐ท๐‘— based on Equations (1) and (3) from
the manuscript, we can insert the general demand model for the periodic process demands:
๐‘ก
std
๐ท๐‘ก,cum
=
โˆ‘ ๐ท๐‘—std
๐‘—=0
๐‘ก
๐‘—
= โˆ‘ [๐›ฟ๐ท0 (1 + ๐œ‡๐ทstd ) + ๐›ฟ๐œŽ๐‘๐‘— ] .
(Eq. C.1.2)
๐‘—=0
๐‘—
In a next step, we divide Equation (C.1.2) into its deterministic part, i.e., โˆ‘๐‘ก๐‘—=0 ๐›ฟ๐ท0 (1 + ๐œ‡๐ทstd ) , and its
stochastic part, i.e., โˆ‘๐‘ก๐‘—=0 ๐›ฟ๐œŽ๐‘๐‘— = ๐›ฟ๐œŽ โˆ‘๐‘ก๐‘—=0 ๐‘๐‘— . This leads to Equation (C.1.3).
4
๐‘ก
๐‘ก
โˆ‘ [๐›ฟ๐ท0 (1 +
๐‘—
๐œ‡๐ทstd )
๐‘ก
+ ๐›ฟ๐œŽ๐‘๐‘— ] = โˆ‘ ๐›ฟ๐ท0 (1 +
๐‘—=0
๐‘—
๐œ‡๐ทstd )
+ ๐›ฟ๐œŽ โˆ‘ ๐‘๐‘—
๐‘—=0
(Eq. C.1.3)
๐‘—=0
Now we can analyze both parts in detail. The deterministic part is a geometric sequence. Therefore, we
can apply the law of the partial sum of a geometric sequence to simplify the expression. The law for the
partial sum of geometric sequence is defined as shown in Equation (C.1.4).
๐‘ก
โˆ‘ ๐‘Ž๐‘ž ๐‘— = ๐‘Ž
๐‘—=0
1 โˆ’ ๐‘ž ๐‘ก+1
1โˆ’๐‘ž
(Eq. C.1.4)
If we set the BPS-adjusted process demand ๐›ฟ๐ท0 =: ๐‘Ž and the demand drift 1 + ๐œ‡๐ทstd =: ๐‘ž, we can simplify the deterministic part of Equation (C.1.3) as shown in Equation (C.1.5).
๐‘ก
๐‘ก+1
โˆ‘ ๐›ฟ๐ท0 (1 +
๐‘—
๐œ‡๐ทstd )
= ๐›ฟ๐ท0
๐‘—=0
1 โˆ’ (1 + ๐œ‡๐ทstd )
1 โˆ’ (1 + ๐œ‡๐ทstd )
๐‘ก+1
= ๐›ฟ๐ท0
1 โˆ’ (1 + ๐œ‡๐ทstd )
โˆ’๐œ‡๐ทstd
(Eq. C.1.5)
According to assumption (A1), the stochastic part of Equation (C.1.3) equals the sum of ๐‘ก independent
and identically normally distributed random variables with a mean of zero and a standard deviation of 1.
Because of the reproduction property of the normal distribution, we know that the sum of normal distributions is again normally distributed. Therefore, ๐‘๐‘กsum follows the distribution shown in Equation
(C.1.6).
๐‘ก
๐›ฟ๐œŽ โˆ‘ ๐‘๐‘— =
๐‘—=0
๐‘ก
๐‘ก
๐‘ก
๐›ฟ๐œŽ๐‘๐‘กsum ~๐‘ (๐›ฟ๐œŽ โˆ‘ ๐œ‡(๐‘๐‘— ) ; ๐›ฟ 2 ๐œŽ 2 โˆ‘ โˆ‘ ๐œŽ( ๐‘๐‘— )๐œŽ(๐‘๐‘– )๐œŒ๐‘–,๐‘— ) ;
๐‘—=0
๐‘—=0 ๐‘–=0
(Eq. C.1.6)
for ๐œŒ๐‘–,๐‘— ๐‘e defined as the correlation coefficient
As the periodic process demand prior to BPS is observable, the deviation ๐‘0 at the decision point equals
zero. Therefore, we can start with ๐‘— = 1 as shown in Equation (C.1.7).
๐‘ก
๐‘ก
๐›ฟ๐œŽ โˆ‘ ๐‘๐‘— = ๐›ฟ๐œŽ โˆ‘ ๐‘๐‘— = ๐›ฟ๐œŽ๐‘๐‘กsum
๐‘—=0
(Eq. C.1.7)
๐‘—=1
Additionally, it is known that the expected values for all periodic demand deviations equal zero, meaning
that the expected value of the sum of all periodic deviations up to period ๐‘ก equals zero, too.
๐‘ก
๐œ‡(๐›ฟ๐œŽ๐‘๐‘กsum )
๐‘ก
= ๐›ฟ๐œŽ โˆ‘ ๐œ‡(๐‘๐‘— ) = ๐›ฟ๐œŽ โˆ‘ 0 = 0
๐‘—=1
(Eq. C.1.8)
๐‘—=1
Furthermore, we can use the independence between the periodic demand deviations from assumption
(A1) and set their correlation coefficients equal to zero (๐œŒ๐‘–,๐‘— = 0 โˆ€๐‘–, ๐‘— โ‹€ ๐‘– โ‰  ๐‘—). Thus, the variance of the
5
sum of the periodic demand deviations ๐œŽ 2 (๐‘๐‘กsum ) equals the sum of their variances as shown in Equation
(C.1.9).
๐‘ก
๐œŽ 2 (๐›ฟ๐œŽ๐‘๐‘กsum )
๐‘ก
๐‘ก
2 2
๐‘ก
2 2
2
2 2
= ๐›ฟ ๐œŽ โˆ‘ โˆ‘ ๐œŽ( ๐‘๐‘— )๐œŽ(๐‘๐‘– )๐œŒ๐‘–,๐‘— = ๐›ฟ ๐œŽ โˆ‘ ๐œŽ (๐‘๐‘— ) = ๐›ฟ ๐œŽ โˆ‘ 1
๐‘—=1 ๐‘–=1
๐‘—=1
๐‘—=1
(Eq. C.1.9)
= ๐›ฟ 2 ๐œŽ 2๐‘ก
Consequently, we can represent the stochastic part of Equation (C.1.3), i.e., ๐›ฟ๐œŽ๐‘๐‘กsum , by a normally
distributed random variable with a mean of zero and a variance of ๐›ฟ 2 ๐œŽ 2 ๐‘ก. Recombining the stochastic
and the deterministic part of Equation (C.1.3), we finally get Equation (C.1.10).
๐‘ก
๐ท
std
t,cum
๐‘ก+1
= โˆ‘ [๐›ฟ๐ท0 (1 +
๐‘—
๐œ‡๐ทstd )
๐‘—=0
C.2
1 โˆ’ (1 + ๐œ‡๐ทstd )
+ ๐›ฟ๐œŽ๐‘๐‘— ] = ๐›ฟ๐ท0
โˆ’ ๐œ‡๐ท
+ ๐›ฟ๐œŽ๐‘๐‘กsum
(Eq. C.1.10)
Expected Value of the Periodic Cash Flows
As the periodic cash flows have stochastic and deterministic parts, we first expand the Equation (17)
from the manuscript to facilitate the calculation of its expected value.
๐‘ก
๐ถ๐น๐‘กstd = (๐›ฟ๐ท0 (1 + ๐œ‡๐ทstd ) + ๐›ฟ๐œŽ๐‘๐‘ก ) (๐‘€0
+
๐‘Žฬƒ๐บcost (๐›ฟ๐œŽ๐‘๐‘กsum
+ ๐›ฟ๐ท0
1 โˆ’ (1 + ๐œ‡๐ทstd )
๐‘ก+1
))
โˆ’๐œ‡๐ทstd
๐‘ก
(Eq. C.2.1)
๐‘ก
= ๐›ฟ๐ท0 (1 + ๐œ‡๐ทstd ) ๐‘€0 + ๐›ฟ 2 ๐ท0 (1 + ๐œ‡๐ทstd ) ๐‘Žฬƒ๐บcost ๐œŽ๐‘๐‘กsum
๐‘ก+1
๐‘ก
+ ๐›ฟ 2 ๐ท0 2 (1 + ๐œ‡๐ทstd ) ๐‘Žฬƒ๐บcost
2 2
+๐›ฟ ๐œŽ
๐‘๐‘ก ๐‘Žฬƒ๐บcost ๐‘๐‘กsum
1 โˆ’ (1 + ๐œ‡๐ทstd )
+ ๐›ฟ๐œŽ๐‘๐‘ก ๐‘€0
โˆ’๐œ‡๐ทstd
2
+ ๐›ฟ ๐œŽ๐‘๐‘ก ๐ท0
1 โˆ’ (1 + ๐œ‡๐ทstd )
๐‘ก+1
โˆ’๐œ‡๐ทstd
Now, we can determine the expected value of the periodic process cash flows ๐ธ(๐ถ๐น๐‘กstd ) as shown in
Equation (C.2.2).
๐‘ก
๐‘ก
๐ธ(๐ถ๐น๐‘กstd ) = ๐ธ (๐›ฟ๐ท0 (1 + ๐œ‡๐ทstd ) ๐‘€0 ) + ๐ธ (๐›ฟ 2 ๐ท0 (1 + ๐œ‡๐ทstd ) ๐‘Žฬƒ๐บcost ๐œŽ๐‘๐‘กsum )
2
2
+ ๐ธ (๐›ฟ ๐ท0 (1 +
1
๐‘ก
๐œ‡๐ทstd ) ๐‘Žฬƒ๐บcost
๐‘ก+1
โˆ’ (1 + ๐œ‡๐ทstd )
โˆ’๐œ‡๐ทstd
) + ๐ธ(๐›ฟ๐œŽ๐‘๐‘ก ๐‘€0 )
๐‘ก+1
2 2
+ ๐ธ(๐›ฟ ๐œŽ
6
๐‘๐‘ก ๐‘Žฬƒ๐บcost ๐‘๐‘กsum ) +
2
๐ธ (๐›ฟ ๐œŽ๐‘๐‘ก ๐ท0
1 โˆ’ (1 + ๐œ‡๐ทstd )
โˆ’๐œ‡๐ทstd
)
(Eq. C.2.2)
In a next step, we eliminate all components whose expected value equals zero and replace the expected
values of deterministic terms by their values. The result in shown in Equation (C.2.3)
๐ธ(๐ถ๐น๐‘กstd )
= ๐›ฟ๐ท0 (1 +
๐‘ก
๐œ‡๐ทstd ) ๐‘€0
2
2
+ ๐›ฟ ๐ท0 (1 +
1โˆ’
๐‘ก
๐œ‡๐ทstd ) ๐‘Žฬƒ๐บcost
๐‘ก+1
(1 + ๐œ‡๐ทstd )
โˆ’๐œ‡๐ทstd
(Eq. C.2.3)
+ ๐ธ(๐›ฟ 2 ๐œŽ 2 ๐‘๐‘ก ๐‘Žฬƒ๐บcost ๐‘๐‘กsum )
Now, we calculate the expected value ๐ธ(๐›ฟ 2 ๐œŽ 2 ๐‘๐‘ก ๐‘Žฬƒ๐บcost ๐‘๐‘กsum ). First of all, the deterministic variables
can be put outside of the expected value operator as shown in Equation (C.2.4).
๐ธ(๐›ฟ 2 ๐œŽ 2 ๐‘๐‘ก ๐‘Žฬƒ๐บcost ๐‘๐‘กsum ) = ๐›ฟ 2 ๐œŽ 2 ๐‘Žฬƒ๐บcost ๐ธ(๐‘๐‘ก ๐‘๐‘กsum )
(Eq. C.2.4)
What remains is the expected value of a product of two random variables. Determining the expected
value of a product of two random variables requires applying the covariance formula from Equation
(C.2.5). The result is shown in Equation (C.2.6).
๐ถ๐‘‚๐‘‰(๐‘‹, ๐‘Œ) = ๐ธ(๐‘‹๐‘Œ) โˆ’ ๐ธ(๐‘‹)๐ธ(๐‘Œ) โ‡” ๐ธ(๐‘‹๐‘Œ) = ๐ถ๐‘‚๐‘‰(๐‘‹, ๐‘Œ) + ๐ธ(๐‘‹)๐ธ(๐‘Œ)
(Eq. C.2.5)
๐ธ(๐‘๐‘ก ๐‘๐‘กsum ) = ๐ถ๐‘‚๐‘‰(๐‘๐‘ก , ๐‘๐‘กsum ) + ๐ธ(๐‘๐‘ก )๐ธ(๐‘๐‘กsum ) = ๐ถ๐‘‚๐‘‰(๐‘๐‘ก , ๐‘๐‘กsum )
(Eq. C.2.6)
Considering the definition of the term ๐‘๐‘กsum as the sum of the independent random deviations from the
sum
demand trend, we can divide it up into the cumulated deviations up to the period ๐‘ก โˆ’ 1, ๐‘๐‘กโˆ’1
, and the
deviation in period ๐‘ก, which is ๐‘๐‘ก .
sum
๐ถ๐‘‚๐‘‰(๐‘๐‘ก , ๐‘๐‘กsum ) = ๐ถ๐‘‚๐‘‰(๐‘๐‘ก , ๐‘๐‘กโˆ’1
+ ๐‘๐‘ก )
(Eq. C.2.7)
On this foundation, we can use the linearity of the covariance to simplify Equation (C.2.6) as follows.
sum
sum )
๐ถ๐‘‚๐‘‰(๐‘๐‘ก , ๐‘๐‘กโˆ’1
+ ๐‘๐‘ก ) = ๐ถ๐‘‚๐‘‰(๐‘๐‘ก , ๐‘๐‘กโˆ’1
+ ๐ถ๐‘‚๐‘‰(๐‘๐‘ก , ๐‘๐‘ก )
(Eq. C.2.8)
Considering that the covariance of a random variable with itself equals its variance and that the periodic
deviation ๐‘๐‘ก is independent from the cumulated deviations, i.e., ๐ถ๐‘‚๐‘‰(๐‘(0,1); ๐‘(0, ๐‘ก โˆ’ 1)) = 0, we can
simplify Equation (C.2.8) as shown in Equation (C.2.9).
sum )
๐ถ๐‘‚๐‘‰(๐‘๐‘ก , ๐‘๐‘กโˆ’1
+ ๐ถ๐‘‚๐‘‰(๐‘๐‘ก , ๐‘๐‘ก ) = ๐œŽ 2 (๐‘๐‘ก ) = 1
(Eq. C.2.9)
Now we can determine the expected periodic cash flows as shown in Equation (C.2.10).
๐ธ(๐ถ๐น๐‘กstd )
= ๐›ฟ๐ท0 (1 +
๐‘ก
๐œ‡๐ทstd ) ๐‘€0
2
2
+ ๐›ฟ ๐ท0 (1 +
1โˆ’
๐‘ก
๐œ‡๐ทstd ) ๐‘Žฬƒ๐บcost
+ ๐›ฟ 2 ๐œŽ 2 ๐‘Žฬƒ๐บcost
C.3
Present Value of the Expected Periodic Cash Flows
The present value of the expected periodic cash flows equals:
7
๐‘ก+1
(1 + ๐œ‡๐ทstd )
โˆ’๐œ‡๐ทstd
(Eq. C.2.10)
๐œ
๐‘ƒ๐‘‰ = โˆ‘
๐‘ก=0
1
๐‘ก
[๐›ฟ๐ท0 (1 + ๐œ‡๐ทstd ) ๐‘€0
(1 + ๐‘–)๐‘ก
(Eq. C.3.1)
๐‘ก+1
๐‘ก
+ ๐›ฟ 2 ๐ท0 2 (1 + ๐œ‡๐ทstd ) ๐‘Žฬƒ๐บcost
1 โˆ’ (1 + ๐œ‡๐ทstd )
+ ๐›ฟ 2 ๐œŽ 2 ๐‘Žฬƒ๐บcost ]
โˆ’๐œ‡๐ทstd
The first step to simplify Equation (C.3.1) is to separate the total sum into different summands as shown
in Equation (C.3.2).
๐œ
๐‘ก
(1 + ๐œ‡๐ทstd )
๐‘ƒ๐‘‰ = โˆ‘ ๐›ฟ๐ท0 ๐‘€0
(1 + ๐‘–)๐‘ก
๐‘ก=0
๐œ
๐‘ก
๐›ฟ 2 ๐ท02 ๐‘Žฬƒ๐บcost (1 + ๐œ‡๐ทstd )
+โˆ‘
(1 + ๐‘–)๐‘ก
โˆ’๐œ‡๐ทstd
๐‘ก=0
๐œ
โˆ’โˆ‘
๐‘ก=0
๐œ
๐›ฟ
2
๐ท02 ๐‘Žฬƒ๐บcost
(1 +
โˆ’๐œ‡๐ทstd
+ โˆ‘ ๐›ฟ 2 ๐œŽ 2 ๐‘Žฬƒ๐บcost
๐‘ก=0
2๐‘ก
(1 + ๐œ‡๐ทstd )
std
๐œ‡๐ท )(
(1 + ๐‘–)๐‘ก
(Eq. C.3.2)
1
(1 + ๐‘–)๐‘ก
Each of the summands is a geometric sequence. Consequently, the law for the partial sum of the geometric sequence can be applied. The present value of each summand can be obtained by inserting the
starting point of each geometric sequence and its growth factor as shown in Equation (C.3.3).
๐œ+1
๐‘ƒ๐‘‰ = (๐›ฟ๐ท0 ๐‘€0 +
๐›ฟ 2 ๐ท02 ๐‘Žฬƒ๐บcost
โˆ’๐œ‡๐ทstd
(1 + ๐œ‡๐ทstd )
(1 + ๐‘–)๐œ+1
1 + ๐œ‡๐ทstd
1โˆ’
1+๐‘–
1โˆ’
)
2 ๐œ+1
โˆ’
๐›ฟ 2 ๐ท02 ๐‘Žฬƒ๐บcost
โˆ’๐œ‡๐ทstd
(1 + ๐œ‡๐ทstd )
(1 + ๐œ‡๐ทstd )
1โˆ’[
]
(1 + ๐‘–)
1โˆ’
(Eq. C.3.3)
2
๐œ‡๐ทstd )
(1 +
(1 + ๐‘–)
1
(1 + ๐‘–)๐œ+1
1
1โˆ’1+๐‘–
1โˆ’
+ ๐›ฟ 2 ๐œŽ 2 ๐‘Žฬƒ๐บcost
C.4
Final Objective Function including the Investment Outflows
Taking all intermediate results and the investment outflows from Equation (20) in the manuscript together, leads to the following final definition of objective function:
8
MAX:
๐‘๐‘ƒ๐‘‰ = ๐‘ƒ๐‘‰ โˆ’ ๐ผ =
(๐›ฟ๐ท0 ๐‘€๐‘œ +
๐œ+1
(1 + ๐œ‡๐ทstd )
(1 + ๐‘–)๐œ+1
๐‘Žฬƒ๐บcost ๐›ฟ 2 ๐ท02 1 โˆ’
)
โˆ’ ๐œ‡๐ทstd
1 + ๐œ‡std
1 โˆ’ 1 + ๐ท๐‘–
2 ๐œ+1
โˆ’
๐‘Žฬƒ๐บcost ๐›ฟ 2 ๐ท02
(1 + ๐œ‡๐ทstd )
โˆ’ ๐œ‡๐ท๐‘ 
(1 + ๐œ‡๐ทstd )
1โˆ’[
]
(1 + ๐‘–)
2
(1 + ๐œ‡๐ทstd )
1โˆ’
(1 + ๐‘–)
1
(1 + ๐‘–)๐œ+1
โˆ’๐ผ
1
1โˆ’1+๐‘–
1โˆ’
+ ๐‘Žฬƒ๐›ฟ 2 ๐บcost ๐œŽ 2
where:
๐‘›
๐‘›
๐›ฟ = โˆ‘ ๐‘ค๐‘ [(1 โˆ’ ๐‘“๐‘
std
)(๐‘ฅ๐‘ โˆ’๐‘ฅ๐‘ )
๐‘€0 = โˆ‘ ๐‘ค๐‘ฃstd (๐‘ƒ๐‘ฃ โˆ’ ๐ถ๐‘ฃ,0 )
]
๐‘=1
v=0
std )
๐‘ค๐‘std =
๐‘ค๐‘ [(1 โˆ’ ๐‘“๐‘ )(๐‘ฅ๐‘ โˆ’๐‘ฅ๐‘
v=0
๐‘ค๐‘ [(1 โˆ’ ๐‘“๐‘ )(๐‘ฅ๐‘โˆ’๐‘ฅ๐‘
๐›ฟ
๐‘›
๐‘ค0std
2
๐บcost = โˆ‘ ( ๐‘ค๐‘ฃstd ) ๐ถ๐‘ฃ,0
๐›ฟ
std )
๐‘ค๐‘ฃstd = ๐‘ฅ๐‘
๐‘š
]
=1โˆ’โˆ‘
]
๐‘›
2
๐บ = โˆ‘ ( ๐‘ค๐‘ฃstd )
v=0
๐‘›
๐‘ค๐‘ฃstd
๐‘ฃ=1
๐ผ = โˆ‘ |๐‘ฅ๐‘ โˆ’ ๐‘ฅ๐‘std |๐ผ๐‘
๐‘=1
๐œ‡๐ท (๐บ std ) = ๐œ‡๐ท + โˆ†๐‘Ÿ(๐บ std )
= ๐œ‡๐ท + ๐›ฝ๐‘†๐ด๐‘‡ [๐›ฝ๐‘„ (Q
subject to:
๐‘ฅ๐‘std โˆˆ {0; 1} and ๐‘…
9
๐‘ ๐‘„
๐‘ ๐‘‡ + ๐‘ ๐‘„
๐‘ ๐‘‡ + ๐‘ ๐‘„
) โˆ†๐บ + ๐›ฝ๐‘๐ถ๐ท (โˆ’๐‘๐ถ๐ท
) โˆ†๐บ + ๐›ฝ๐‘ƒ๐ถ๐ท (๐‘ƒ๐ถ๐ท
) โˆ†๐บ]
1โˆ’๐บ
1โˆ’๐บ
1โˆ’๐บ
D
Questionnaire and Responses for the Real-World Case
Demand of the coverage switching processes
How many process instances where executed in the last period?
9,875
How will the periodic demand relatively increase or decrease over the planning horizon?
+10% per year
What is the standard deviation of the periodic demand?
1,200 per year
Execution options of the coverage switching processes
What is the average revenue of the integration of one contract?
90.00 EUR
Execution option
Fraction of the demand
covered by this
execution option
What fraction of the currently conCosts
nected brokers would leave if this
per execution
execution option were eliminated?
Submission of
end-customer
information in
electronic form
30%
20.00 EUR
5%
Submission of
end-customer
information in
paper form
70%
25.00 EUR
5%
Broker updates
information
70%
11.25 EUR
25%
Call center updates
information
30%
37.50 EUR
0%
Broker changes
contract
80%
3.75 EUR
25%
Call center
changes contract
20%
12.50 EUR
0%
Experience curve effects
How high were the average costs per execution in the last period?
48.25 EUR
How did the average execution costs change in the last period?
- 2.50 EUR
Process quality and time from Andersonโ€™s model
How do you rate the current process quality on a 10 point scale? (1 = very low,โ€ฆ, 10 = very high)
10
8
By what percentage would the process quality improve due to BPS?
+12.50%
By what percentage would the process time improve due to BPS?
+63.33%
Company-specific adjustment factors from Andersonโ€™s model
Adjustment factor
Derivation
Values
Concentration
(CONC)
The inverse of the number of competitors comprising 70 percent of the sales
in the industry
20
Ease of evaluating
quality (QEVAL)
How difficult or easy is it to evaluate
quality (1 = very difficult,โ€ฆ, 10 = very
easy)?
8
Differentiation
(DIFF)
How strongly do you differ from your
competitors on a scale from 1 to 10 (1
= very weak,โ€ฆ, 10 = very strong)?
4
Involvement (INVOLV)
How would you rate the involvement
of your customers on a scale from 1 to
10 (1 = very low,โ€ฆ, 10 = very high)?
3
Frequency of usage
(USAGE)
How would you rate the frequency of
your customersโ€™ usage of the integration process on a scale from 1 to 10 (1
= very low,โ€ฆ, 10 = very high)?
5
Switching costs
(SC)
How would you rate your customersโ€™
switching costs on a scale from 1 to 10
(1 = very low,โ€ฆ, 10 = very high)?
3
Difficulty of standardization (DSTD)
How would you rate the standardization difficulty within your industry on
a scale from 1 to 10 (1 = very low,โ€ฆ,
10 = very high)?
9
Further parameters
What is the planning horizon for investment decisions within your company?
7 years
What is the risk-adjusted discount rate for investment decisions within your company?
4% per year
11
Process quality and time from Andersonโ€™s model (using process variant 3 as master process)
By what percentage would the process quality improve due to BPS?
-10.00%
By what percentage would the process time improve due to BPS?
-30.00%
Process quality and time from Andersonโ€™s model (using process variant 4 as master process)
By what percentage would the process quality improve due to BPS?
+11.25%
By what percentage would the process time improve due to BPS?
+57.00%
Figure 1: The master process (basic scenario)
E
E.1
Sensitivity Analysis (Basic Scenario)
Adjusted Values of the Objective Function
-0.5
-0.4
-0.3
-0.2
-0.1
0.1
0.2
0.3
0.4
0.5
Opt. Profile
12
Quality Effect
Time Effect
Demand Drift
Demand
4,380,780
4,380,912
4,381,043
4,381,175
4,381,306
4,381,569
4,381,701
4,381,832
4,381,964
4,382,096
no changes
4,380,927
4,381,029
4,381,131
4,381,233
4,381,336
4,381,540
4,381,642
4,381,745
4,381,847
4,381,949
no changes
3,650,498
3,784,457
3,924,260
4,070,170
4,222,465
4,547,392
4,720,648
4,901,542
5,090,427
5,287,671
no changes
2,115,078
2,556,206
3,003,406
3,456,678
3,916,022
4,852,926
5,330,486
5,814,119
6,303,823
6,799,599
no changes
-0.5
-0.4
-0.3
-0.2
-0.1
0.1
0.2
0.3
0.4
0.5
Opt.
Profile
E.2
Learning Curve
Planning Horizon
Quality
4,229,378
4,259,790
4,290,202
4,320,614
4,351,026
4,411,850
4,442,262
4,472,674
4,503,086
4,533,498
2,146,961
2,547,911
2,970,308
3,415,614
3,885,416
4,905,559
5,459,823
6,046,462
6,667,909
7,326,822
4,380,881
4,380,993
4,381,104
4,381,215
4,381,327
4,381,549
4,381,661
-
no changes
no changes
no changes
no changes
Delta compared to the Status Quo
-0.5
-0.4
-0.3
-0.2
-0.1
+0.1
+0.2
+0.3
+0.4
+0.5
Opt. Profile
-0.5
-0.4
-0.3
-0.2
-0.1
+0.1
+0.2
+0.3
+0.4
+0.5
Opt.
Profile
13
Demand
Variance
4,381,179
4,381,231
4,381,282
4,381,334
4,381,386
4,381,490
4,381,542
4,381,593
4,381,645
4,381,697
Quality Effect
Time Effect
Demand Drift
Demand
20,361
20,492
20,624
20,755
20,886
21,150
21,281
21,413
21,544
21,676
no changes
20,507
20,609
20,711
20,813
20,916
21,120
21,223
21,325
21,427
21,529
no changes
17,296
17,974
18,683
19,426
20,203
21,872
22,766
23,703
24,686
25,716
no changes
9,835
11,963
14,146
16,382
18,673
23,417
25,870
28,378
30,939
33,554
no changes
Demand
Variance
21,016
21,016
21,017
21,017
21,018
21,018
21,019
21,019
21,020
21,020
Learning Curve
Planning Horizon
Quality
19,663
19,934
20,205
20,476
20,747
21,289
21,560
21,831
22,102
22,373
9,426
11,381
13,501
15,803
18,302
23,972
27,185
30,685
34,499
38,658
20,461
20,573
20,684
20,795
20,907
21,129
21,241
-
no changes
no changes
no changes
no changes
F
Glossary
BPS-specific variables
Superscript indicating a variableโ€™s value after BPS
๐ฌ๐ญ๐
๐‘ฎ๐œ๐จ๐ฌ๐ญ
๐‘ฎ
Cost-weighted Gini Coefficient
Gini Coefficient
Process Variants and Contexts Variables
A distinct process variant
๐’—
๐’„
A distinct process context
๐’˜๐’„
Demand weight of a process context
๐’
Total number of process contexts
๐‘ด๐’•
Profit margin in period t
Demand Model
Periodic process demand
๐‘ซ๐’•
๐๐‘ซ
Demand trend
๐’๐’•
Periodic demand deviation
๐ˆ
Standard deviation of the periodic demand deviations
Demand Effects of BPS
Fraction of demand for process context c that can only be tapped by the corresponding
๐’‡๐’„
process variant v
๐œน
Total relative change in the process demand due to BPS
๐’˜๐ฌ๐ญ๐
๐’—
Demand weight covered by process variant v
๐’˜๐ฌ๐ญ๐
๐ŸŽ
Demand weight covered by the master process
Learning Curve
Cumulated demand
๐‘ซ๐œ๐ฎ๐ฆ
๐’‚
Elasticity of the process costs regarding the cumulated demand
๐‘ฒ
Process costs of for the first output
๐‚
Process costs
๐‘ซ๐ŸŽ,๐œ๐ฎ๐ฆ
ฬƒ
๐’‚
๐‘ซ๐ฌ๐ญ๐
๐’•,๐œ๐ฎ๐ฆ
Cumulated process demand up to the decision point
Adjusted elasticity of the process costs regarding the cumulated demand
Cumulated process demand that has been reached starting from the decision point up to
period t
Quality and Time Effects
14
๐‘ธ
Process quality
๐‘ป
Process time
๐’”๐‘ธ
Relative increase in process quality in case of complete standardization compared to
the status prior to BPS
๐’”๐‘ป
Relative increase in process time in case of complete standardization compared to the
status prior to BPS
๐‘บ๐‘จ๐‘ป
Customer satisfaction
๐‘ฌ๐‘ฟ๐‘ท
Customer expectation
๐‘ต๐‘ช๐‘ซ
Negative Confirmation/Disconfirmation
๐‘ท๐‘ช๐‘ซ
Positive Confirmation/Disconfirmation
๐œท๐‘ธ
Sensitivity of customer satisfaction w.r.t. process quality
๐œท๐‘ต๐‘ช๐‘ซ
Sensitivity of customer satisfaction w.r.t. negative confirmation/-disconfirmation
๐œท๐‘ท๐‘ช๐‘ซ
Sensitivity of customer satisfaction w.r.t. positive confirmation/disconfirmation
๐’“
๐œท๐‘บ๐‘จ๐‘ป
Retention rate
Sensitivity of retention rate w.r.t. customer satisfaction
Objective Function
Decision variable indicating that process context c is covered by the respective process
๐’™๐’„
variant (๐‘ฅ๐‘ = 1) or the master process (๐‘ฅ๐‘ = 0) prior to BPS
๐’™๐ฌ๐ญ๐
๐’„
Decision variable indicating that process context c is covered by the respective process
variant (๐‘ฅ๐‘ = 1) or the master process (๐‘ฅ๐‘ = 0) after to BPS
๐‘ช๐‘ญ๐’•
Periodic process cash flows in period t
๐’•
A distinct period within the planning horizon
๐‰
Total planning horizon
๐’Š
Risk-adjusted interest rate
๐‘ฐ
Overall investment outflows
๐‘ฐ๐’„
Investment outflows for process context c
๐‘ท๐‘ฝ
๐‘ต๐‘ท๐‘ฝ
๐‘น
15
Risk-adjusted expected present value
Risk-adjusted expected net present value
Set of constraints regarding admissible values of ๐‘ฅ๐‘std