Effective-Field-Theory Approach of the anomalous

TH-Institute25-July-2016
Effective-Field-TheoryApproachofthe
anomalousTripleGaugeCouplings
attheLHC
MinhoSon
KAIST
Greljo,Gonzalez-Alonso,Falkowski,Marzoca,SONinprogress
Lesson from Run1, part of Run 2
> π’ͺ(TeV)
: cut-off scale
extracted from data
Higgs Effective Field Theory
Widely separated two scales, or seemingly un-natural
hierarchy offers a remarkable bonus
StoletextfromthetalkbyRattazzi
β„’)*+, = β„’/0123. + 𝐻𝑖𝑔𝑔𝑠
1
1
= β„’ (:;<) +
β„’ +
β„’ +β‹―
Ξ› ?)@ (A) Ξ›B?)@ (C)
Structural picture of EFT Racco,Wulzer,Zwirner 15’
Contino,Falkowski,Goertz,Grojean,Riva16’
π‘”βˆ—
𝑀FGH
π‘”βˆ—
π‘€βˆ— =
π‘š
𝑀FGH
π‘”βˆ—
Interaction scale
Structural picture of EFT Racco,Wulzer,Zwirner 15’
Contino,Falkowski,Goertz,Grojean,Riva16’
π‘”βˆ—
𝑀FGH
π‘”βˆ—
π‘€βˆ— =
π‘š
𝑀FGH
π‘”βˆ—
Interaction scale
: the only scale accessible to
a low-E observer
Typical interaction in EFT is
controlled by the effective coupling,
𝐸
𝑔 𝐸 =
π‘€βˆ—
𝑀FGH
≀
= π‘”βˆ—
π‘€βˆ—
Structural picture of EFT Racco,Wulzer,Zwirner 15’
Contino,Falkowski,Goertz,Grojean,Riva16’
π‘”βˆ—
πœ“
πœ“
πœ“
πœ“
𝑀FGH
β†’ π‘šN
π‘”βˆ—
𝑔O
πœ“
πœ“
𝑀FGH
π‘€βˆ— =
π‘”βˆ—
π‘š
Interaction scale
: the only scale accessible to
a low-E observer
πœ“
B
𝑔O
∼ B
π‘šO
Typical interaction in EFT is
controlled by the effective coupling,
𝐸
𝑔 𝐸 =
π‘€βˆ—
𝑀FGH
≀
= π‘”βˆ—
π‘€βˆ—
β†’
π‘šN
1
=
𝑔O
𝐺Q
πœ“
β†’ π‘šR
𝑔O
𝑔𝐸 =
𝐸
π‘šO
Structural picture of EFT Racco,Wulzer,Zwirner 15’
Contino,Falkowski,Goertz,Grojean,Riva16’
π‘”βˆ—
𝑀FGH
π‘”βˆ—
π‘€βˆ— =
π‘š
𝑀FGH
π‘”βˆ—
Interaction scale
Typical interaction in EFT is
controlled by the effective coupling,
𝐸
𝑔 𝐸 =
π‘€βˆ—
𝑀FGH
≀
= π‘”βˆ—
π‘€βˆ—
Unitarity violation in EFT
𝑆𝑀
𝑆𝑀
π‘”βˆ—
𝑆𝑀
𝑀FGH
π‘”βˆ—
𝑆𝑀
𝑀FGH
π‘”βˆ—
π‘€βˆ— =
𝑆𝑀
𝑀FGH
π‘”βˆ—
𝑆𝑀
π’œ]^
𝑆𝑀
𝑆𝑀
π‘”βˆ—B 𝑠
∝
B
𝑠 βˆ’ 𝑀FGH
β†’ const. as𝑠 β†’ ∞
𝑔Bβˆ— 𝑠
𝑠B
= B +𝑂
<
𝑀FGH
𝑀FGH
What if our collider was not strong
enoug h to produce 𝑴𝒄𝒖𝒕 ?
π’œ[Q\ ∼
𝑠
π‘€βˆ—B
E-growing
β†’ ∞as𝑠 β†’ ∞
vs.
Validity of EFT
EarlynewphysicshintinEFTapproachreliesontheE-growingfeatureduetodecent𝑆/ 𝐡.
However,thisbenefitshouldcutoffatacertainenergyscale,𝐸 < 𝑀FGH
Constraining HEFT via VV processes
WewillparameterizeBSMintheHiggsbasis
Seeβ€œLHC HiggsCrossSectionWorkingGroup”note
Data
Newinteractionsbeyond SM
β„’/0123 [Q\ = β„’lm + Ξ”β„’
β„’o[Q\ = β„’lm
β€’
β€’
shiftofthecoupling strengthawayfromSMpredictions
newtensorstructuresofinteractionabsentinSM
π’ͺrtruvC
+ βˆ‘π‘sr
𝑣B
Warsaw,SILHbasesetc with
SU(2)doublet HiggsH
BSM
𝑔B (𝐸) ∼
𝑂
B
𝑔lm
𝐸B
𝑐̅
π‘šBN
Constraining HEFT via VV processes
β„’\yz = 𝑖𝑒 π‘Š}~β€’ π‘Š}€ βˆ’ π‘Š}~€ π‘Š}β€’ 𝐴~ + 1 + π›Ώπœ… β€ž 𝐴}~ π‘Š}β€’ π‘Š~€
β€’ π‘Š € βˆ’ π‘Š € π‘Š β€’ 𝑍 + 1 + π›Ώπœ… 𝑍 π‘Š β€’ π‘Š €
+𝑖𝑔… π‘π‘œπ‘ πœƒ 1 + 𝛿𝑔ˆ,Ε  π‘Š}~
}
}~ }
~
Ε  }~ }
~
+𝑖𝑒
TreatLEPmeasurementsasinputs
πœ†β€ž
π‘šBN
€𝐴
π‘Š}~β€’ π‘Š~β€’
β€’} +𝑖𝑔… π‘π‘œπ‘ πœƒ
𝑔ŽB
π›Ώπœ… Ε  = 𝛿𝑔ˆ,Ε  βˆ’ B π›Ώπœ… β€ž
𝑔…
πœ†Ε  β€’ €
π‘Š π‘Š 𝑍
π‘šBN }~ ~β€’ β€’}
πœ†Ε  = πœ†β€ž
β†’Three variables for VV
{πœ† Ε  , 𝛿𝑔ˆ,Ε  , π›Ώπœ…β€ž }
A difficulty of EFT approach:
Many parameters lead to a degeneracy
Decay vs 2-to-2 scattering process
𝛿𝑐
π‘”βˆ—
∼
𝑐lm
𝑔lm
Main focus of Run 1
Parameters in HEFT
are πœƒ, 𝑠̂ -dependent
B
π›ΏπœŽBβ†’B 𝑔B (𝐸)
π‘”βˆ—
∼ B ∼
𝜎lm
𝑔lm
𝑔lm
π‘šB0
B
𝑀FGH
B
𝐸B
B
𝑀FGH
Important item of Run 2
π‘‘πœŽ
𝑑 𝑠̂ ,
π‘‘πœŽ
,
π‘‘π‘π‘œπ‘ πœƒ
π‘‘πœŽ
𝑑 𝑠̂ Can see more microscopic
structure of BSM
ˆ”,‒–
˜
π‘‘πœŽ
𝑑 𝑠̂ β€”,‒–
Decay vs 2-to-2 scattering process
𝛿𝑐
π‘”βˆ—
∼
𝑐lm
𝑔lm
B
π›ΏπœŽBβ†’B 𝑔B (𝐸)
π‘”βˆ—
∼ B ∼
𝜎lm
𝑔lm
𝑔lm
π‘šB0
B
𝑀FGH
Main focus of Run 1
B
𝐸B
B
𝑀FGH
Important item of Run 2
π‘‘πœŽ
Parameters in HEFT
are πœƒ, 𝑠̂ -dependent
𝑑 𝑠̂ ,
π‘‘πœŽ
,
π‘‘π‘π‘œπ‘ πœƒ
π‘‘πœŽ
𝑑 𝑠̂ ˆ”,‒–
˜
Can see more microscopic
structure of BSM
Accessing to the truth-level
is non-trivial
Whatwewanttoknow
𝑠̂
= π‘šNN, π‘šNβ„’
𝑠̂
vs.
Whatwecurrentlymeasure
π‘šΕ‘Ε‘ ,π‘š\Nβ„’ , 𝑝\ etc
π‘‘πœŽ
𝑑 𝑠̂ β€”,‒–
Accessing to the truth-level
𝑠̂ is non-trivial
SM WZ→ lνll, 8TeV
1000
104
900
800
3
10
700
600
500
102
400
300
10
200
100
0
100
200
300
400
500
600
700
800
900
1000
mWW [GeV]
What we want to know
1
mWZ
[GeV]
T
1000
What is measured
mll [GeV]
What is measured
SM WW→ lνlν, 8TeV
104
900
800
103
700
600
500
102
400
300
10
200
100
0
100
200
300
400
500
600
700
800
900
1000
1
mWZ [GeV]
What we want to know
Pollution from the wrong events
:yourhypothesis
π‘šNN < π‘šuΕ“β€’
NN
Theory
π‘‘πœŽ
π‘‘π‘šNN
EFT works
EFT beaks down
Events beyond
EFT regime
bin1
bin2
…
π‘šNN
Data
π‘‘πœŽ
π‘‘π‘šΕ‘Ε‘
bin1
bin2
…
π‘šΕ‘Ε‘ <
FGH
𝑀žrΕΈ
π‘šΕ‘Ε‘
Removal of the healthy events
:yourhypothesis
π‘šNN < π‘šuΕ“β€’
NN
Theory
π‘‘πœŽ
π‘‘π‘šNN
EFT works
EFT beaks down
Events beyond
EFT regime
bin1
bin2
…
π‘šNN
Data
π‘‘πœŽ
π‘‘π‘šΕ‘Ε‘
bin1
bin2
…
π‘šΕ‘Ε‘ <
FGH
𝑀žrΕΈ
π‘šΕ‘Ε‘
You wrongly kill healthy events
mll [GeV]
What is measured
SM WW→ lνlν, 8TeV
1000
104
900
800
103
700
600
500
102
Youcuthereon π‘šΕ‘Ε‘
400
300
10
200
100
0
100
200
300
400
500
600
700
800
900
1000
1
mWW [GeV]
You fail to remove these wrong events
π‘šuΕ“β€’
NN
What controls EFT validity
u£¤¥
¢¢
¦
π‘‘πœŽ
π‘‘π‘š^^
β‰ 
π‘‘π‘š^^
ª«¬
m§¨©
¦
π‘‘π‘šΕΎrΕΈ
π‘‘πœŽ
π‘‘π‘šΕΎrΕΈ
Cutting on π‘šπ‘™π‘™ is not justified.
What do we do?
In principle, if we can access to π‘š^^ ≑ 𝑠̂
(𝜎lm +𝜎®lm )(π‘š^^ < π‘šuΕ“β€’
^^ )
𝜎3°ΕΈ (π‘š^^ < π‘šuΕ“β€’
^^ )
In mass situations, we do not have access to π‘šπ‘‰π‘‰ ≑ 𝑠²
We only hope to set a conservative bound
(𝜎3°ΕΈ βˆ’πœŽlm) βˆ’ Ξ”πœŽ ≀ 𝜎®lm ≀ (𝜎3°ΕΈ βˆ’πœŽlm ) + Ξ”πœŽ
u¢¢³u£¤¥
𝜎®lm ¢¢
+
u¢¢´u£¤¥
𝜎®lm ¢¢
InspiredbyRacco,Wulzer,Zwirner 15’
ForgeneraldiscussionforValidityofEFT
Biekötter, Krämer,Liu,Riva15’
Contino,Falkowski,Goertz,Grojean,Riva16’
setting a conservative bound
(𝜎3°ΕΈ βˆ’πœŽlm) βˆ’ Ξ”πœŽ ≀ 𝜎®lm ≀ (𝜎3°ΕΈ βˆ’πœŽlm ) + Ξ”πœŽ
u¢¢³u£¤¥
𝜎®lm ¢¢
u
³u£¤¥
¢¢
¢¢
If𝜎®lm
u
´u£¤¥
¢¢
¢¢
> 0 &&𝜎®lm
𝜎3°ΕΈ βˆ’ 𝜎lm βˆ’ Ξ”πœŽ ≀
+
u¢¢´u£¤¥
𝜎®lm ¢¢
> 0 &&Noexcess
u¢¢³u£¤¥
𝜎®lm ¢¢
≀ (𝜎3°ΕΈ βˆ’πœŽlm) + Ξ”πœŽ
InspiredbyRacco,Wulzer,Zwirner 15’
ForgeneraldiscussionforValidityofEFT
Biekötter, Krämer,Liu,Riva15’
Contino,Falkowski,Goertz,Grojean,Riva16’
setting a conservative bound
(𝜎3°ΕΈ βˆ’πœŽlm) βˆ’ Ξ”πœŽ ≀ 𝜎®lm ≀ (𝜎3°ΕΈ βˆ’πœŽlm ) + Ξ”πœŽ
u¢¢³u£¤¥
𝜎®lm ¢¢
u
³u£¤¥
¢¢
¢¢
If𝜎®lm
u
´u£¤¥
¢¢
¢¢
> 0 &&𝜎®lm
𝜎3°ΕΈ βˆ’ 𝜎lm βˆ’ Ξ”πœŽ ≀
+
InspiredbyRacco,Wulzer,Zwirner 15’
ForgeneraldiscussionforValidityofEFT
Biekötter, Krämer,Liu,Riva15’
Contino,Falkowski,Goertz,Grojean,Riva16’
u¢¢´u£¤¥
𝜎®lm ¢¢
> 0 &&Noexcess
u¢¢³u£¤¥
𝜎®lm ¢¢
≀ (𝜎3°ΕΈ βˆ’πœŽlm) + Ξ”πœŽ
ü Intheabsenceofthe interferencebetweenSMandBSM
ü Inthepresenceofthe interference
β€’
Incompletejustification
𝜎®lm ∝ (π’œ βˆ—lmπ’œ®lm + β„Ž. 𝑐. ) + π’œ ®lm
π’œ ®lm
π‘”βˆ—
∼
π’œ lm
𝑔lm
B
B
B
𝐸
>1
π‘šuΕ“β€’
^^
for𝐸 > π‘šuΕ“β€’
^^
Ifatheoryisstronglycoupled, π‘”βˆ— ≫ 𝑔lm
β€’
Suppression ofinterferencebyhidden selectionrules
𝜎®lm ∝
(π’œ βˆ—lmπ’œ ®lm +
β„Ž. 𝑐. ) + π’œ ®lm
B
∼ π’œ ®lm
B
-> This is what’s
happening in aTGC
No excess scenario
:yourhypothesis
π‘šNN < π‘šuΕ“β€’
NN
Theory
π‘‘πœŽ
π‘‘π‘šNN
Valid EFT regime
What we propose
EFT beaks down
1.Assumepossible
cut-offscale
2.Removeevents
u¢¢´u£¤¥
from𝜎®lm ¢¢ in
bin1
bin2
yoursimulation
…
π‘šNN
Data
3.recastdata
inentireπ‘š Ε‘Ε‘ distribution
4.Repeat1-3for
differentchoiceofcutoffscales
π‘‘πœŽ
π‘‘π‘šΕ‘Ε‘
bin1
bin2
…
π‘šΕ‘Ε‘
u
³u£¤¥
¢¢
¢¢
𝜎3°ΕΈ βˆ’ 𝜎lm βˆ’ Ξ”πœŽ ≀ 𝜎®lm
≀ (𝜎3°ΕΈ βˆ’πœŽlm) + Ξ”πœŽ
Complication in Resonance scenario
:yourhypothesis
π‘šNN <
Theory
π‘‘πœŽ
π‘‘π‘šNN
π‘šuΕ“β€’
NN
EFT assumes
no resonance
bin1
Resonance
bin2
…
π‘šNN
Data
π‘‘πœŽ
π‘‘π‘šΕ‘Ε‘
EFT behavior
Data includes
whole events
bin1
bin2
…
π‘šΕ‘Ε‘
β†’Unphysical Fit
u
¢¢
𝜎3°ΕΈ βˆ’ 𝜎lm βˆ’ Ξ”πœŽ ≀ 𝜎®lm
³u£¤¥
¢¢
≀ (𝜎3°ΕΈ βˆ’πœŽlm ) + Ξ”πœŽ
ü
*Canbefixedifwerecoverfull 𝑠̂ = π‘šNN
Inthiscase,wemightjustswitchto
resonancesearchthanrelyingon EFT
aTGC Amplitude
aTGC in WW
T, U channels participate in
Unitarity restoration in SM
Anomalous TripleGaugecouplings
π‘Šβ€’
𝑒
𝑒
π‘Šβ€’
𝑑
𝑒¿
π‘Šβ‚¬
𝑒¿
π‘Šβ‚¬
Perfect cancellation of E-growing pieces
S-channel
π’œ lm
¦,¦
sinπœƒ
∼
2
(𝑇G”
βˆ’
𝑠»B¼ 𝑄G )𝑔 B
T
+ 𝑒 B 𝑄G
𝑔B 𝑠
βˆ’
=0
2 π‘šBN
Imperfect cancellation picks up E-growing behavior
sinπœƒ B ”
𝑠
π’œ ¦,¦ ∼
𝑔 𝑇G βˆ’ 𝑠»B¼ 𝑄G π›Ώπœ… Ε  + 𝑒 B 𝑄G π›Ώπœ… β€ž B
2
π‘šN
π’œ …/À,¦ ∼
βˆ“1 βˆ’ cosπœƒ
2 2
𝑔 B 𝑇G” βˆ’ 𝑠»B¼ 𝑄G (𝛿𝑔ˆŠ + π›Ώπœ… Ε  + πœ† Ε  ) + 𝑒 B 𝑄G (π›Ώπœ… β€ž + πœ† β€ž )
𝑠
π‘šN
aTGC in WZ
T, U channels participate in
Unitarity restoration in SM
Anomalous TripleGaugecouplings
𝑒
𝑒
π‘Šβ€’
π‘Šβ€’
𝑒
𝑑
𝑍
𝑑̅
π‘Šβ€’
𝑒
𝑑̅
𝑑̅
𝑍
𝑍
Perfect cancellation of E-growing pieces
π’œ lm
¦,¦ ∼ sinπœƒ
𝑔B
S-channel
2 2𝑐»¼
T
U
c B»¼ + (𝑇t” βˆ’π‘ »B¼ 𝑄t ) βˆ’ (𝑇G” βˆ’π‘ »B¼ 𝑄G )
𝑠
=0
π‘šN π‘šβ„’
Imperfect cancellation picks up E-growing behavior
π’œ ¦,¦ ∼ sinπœƒ
𝑔B
c»B¼ 𝛿𝑔ˆ,Ε 
𝑠
π‘šN π‘šβ„’
ü Accessing to the polarizations
could give us further
discriminating power
2 2𝑐»¼
𝑐»¼ 𝑔 B
𝑠
π’œ …/À,À/… ∼ βˆ’sinπœƒ
πœ†Ε  B
π‘šN
2 2
𝑔B
𝑠
π’œ …/À,¦ ∼ ±1 + cosπœƒ
2c»B¼ 𝛿𝑔ˆ,Ε  + πœ† Ε 
4c»¼
π‘šβ„’
π’œ ¦,À/…
𝑔B
𝑠
∼ βˆ“1 + cosπœƒ
c»B¼ (𝛿𝑔ˆ,Ε  + π›Ώπœ… Ε  + πœ† Ε  )
4c»¼
π‘šN
Quadratic vs Linear fit
𝜎Í𝜎 = 1 + 𝐡 πœ… + 𝐢 πœ… πœ…
Ε“ Ε“
Ε“° Ε“ °
lm
Linear: dim-6*SM
∼ π’ͺ Λ€B
Quadratic : dim-6*dim-6
∼ π’ͺ Λ€<
πœ… Ε“ = {πœ† Ε  ,𝛿𝑔ˆ,Ε  , 𝛿 πœ… β€ž }
[ dim-8*SM ∼ π’ͺ(Λ€<) ]
Inclusivecrosssections
VaryingoneaTGC atatime(nocross-term included)
οΏ½οΏ½ οΏ½οΏ½οΏ½
οΏ½ =οΏ½ οΏ½οΏ½οΏ½
οΏ½οΏ½ οΏ½οΏ½οΏ½
οΏ½οΏ½οΏ½οΏ½
πœ†Ε 
οΏ½οΏ½οΏ½οΏ½
οΏ½οΏ½οΏ½οΏ½
𝛿𝑔ˆ,Ε 
οΏ½οΏ½οΏ½οΏ½
π›Ώπœ… β€ž
οΏ½οΏ½οΏ½οΏ½
SolidLines: 𝑠̂ < ∞
οΏ½οΏ½οΏ½οΏ½
DashedLines: 𝑠̂ < 600GeV
οΏ½οΏ½οΏ½οΏ½
:Quadratictermsstaybeing
dominant foranycutvalueon 𝑠̂-cut
οΏ½οΏ½οΏ½οΏ½
οΏ½οΏ½οΏ½οΏ½
οΏ½οΏ½οΏ½οΏ½
οΏ½οΏ½οΏ½οΏ½
-οΏ½οΏ½οΏ½
Οƒ /ΟƒοΏ½οΏ½
Οƒ /ΟƒοΏ½οΏ½
οΏ½οΏ½οΏ½οΏ½
οΏ½οΏ½οΏ½οΏ½
οΏ½ =οΏ½ οΏ½οΏ½οΏ½
οΏ½οΏ½οΏ½οΏ½
οΏ½οΏ½οΏ½οΏ½
-οΏ½οΏ½οΏ½
οΏ½οΏ½οΏ½
οΏ½οΏ½οΏ½
οΏ½οΏ½οΏ½
-οΏ½οΏ½οΏ½
-οΏ½οΏ½οΏ½
{λ�� δ����� δκγ }
οΏ½οΏ½οΏ½
οΏ½οΏ½οΏ½
{λ�� δ����� δκγ }
Interference terms appear to be suppressed
Deeper insight comes from Helicity Amplitude
Structural difference between WW and WZ
οΏ½οΏ½οΏ½
Helicity Amplitude
Deeper insight into the suppressed interference
Azatov,Contino,Machado, Riva16’
Cheung, Shen15’
Inthemasslesslimit
I. Gluing amplitudes to get n-pt amplitude
±
βˆ“
β„Ž 𝐴2 = β„Ž 𝐴u + β„Ž(𝐴uÙ )
𝐴uØ
𝐴u
II. 3-pt amplitude
LittleGroupscalinguniquely fixesthe3-pointamplitudes
2
1
𝑔
3
E.g.
𝐴” 10Ï 20Ð 30Ò = 𝑔 Ó
Littlegroup+NDA
𝑆𝑀
π’ͺ”N = tr(π‘Š ”)
12 0Ò€0Ï β‚¬0Ð 13 0Ѐ0Ï β‚¬0Ò 23 0Ï€0Ð β‚¬0Ò forβˆ‘β„Žr < 0
[12]0Ïβ€’0Ð β‚¬0Ò [13]0Ïβ€’0Ò β‚¬0Ð [23]0Ðβ€’0Ò β‚¬0Ï forβˆ‘β„Žr > 0
β†’ βˆ‘β„Žr ≑ β„Ž = 1 βˆ’ [𝑔]
β„Ž(𝐴lm
” ) =1βˆ’ 𝑔 = 1
β„Ž(𝐴®lm
) = 1 βˆ’ 𝑐”N = 3
”
III. Some of SM 4-pt amplitude with |β„Ž 𝐴lm
| = 2 vanish
<
𝐴< 𝑉‒ 𝑉‒ 𝑉‒ 𝑉€ = 𝐴< 𝑉‒ 𝑉‒ πœ“ β€’ πœ“ € = 𝐴< 𝑉‒ 𝑉‒ πœ™πœ™ = 𝐴< 𝑉‒ πœ“ β€’ πœ“β‚¬ πœ™ = 0
Azatov,Contino,Machado, Riva16’
Illustrative example
Helicity selection rule: total helicity should match
πœ“±
πœ“βˆ“
πœ“±
+
βˆ’ +
β„Ž
βˆ’
𝐴lm
<
=0
πœ“βˆ“
+
βˆ’ +
+
Azatov,Contino,Machado,Riva16’
β„Ž 𝐴®lm
=2
<
BSM amplitude
with insertion of π’ͺ”N ∼ tr(π‘Š ” )
SM amplitude
How to interfere? Flip the helicity via VEV insertion (finite mass effect)
+
πœ“±
πœ“βˆ“
βˆ’ +
0
VEV
0
VEV
β„Ž
𝐴lm
C
=2
π‘šN
∝
𝐸
B
+
Azatov,Contino,Machado,Riva16’
EFT interpretation of LHC data
Available analyses
Butteretal.16’
EFT interpretation of LHC data
Available analyses
Butteretal.16’
CMS-SMP-14-016
Events / (75 GeV)
Recasting WW-lvlv
CMS analysis at 8TeV
CMS
19.4 fb-1 (8 TeV)
Preliminary
4
Data
WW
WZ/ZZ/VVV
10
Top
DY
W+jets
cW/Ξ›2 = 20 TeV-2
3
cWWW/Ξ›2 = 20 TeV-2
10
cB/Ξ›2 = 55 TeV-2
102
10
100
200
300
400
500
600
mll (GeV)
ü WeakcorrelationamongaTGC
ü π‘š^^ < ∞ isroughlysimilartoπ‘š^^ < π’ͺ(TeV).Weakening ispronounced forπ‘š^^ < π’ͺ(sub-TeV)
CMS-SMP-14-016
Events / (75 GeV)
Recasting WW-lvlv
CMS analysis at 8TeV
CMS
19.4 fb-1 (8 TeV)
Preliminary
4
Data
WW
WZ/ZZ/VVV
10
Top
DY
W+jets
cW/Ξ›2 = 20 TeV-2
3
cWWW/Ξ›2 = 20 TeV-2
10
cB/Ξ›2 = 55 TeV-2
102
10
100
200
300
400
500
600
mll (GeV)
ü WeakcorrelationamongaTGC
ü π‘š^^ < ∞ isroughlysimilartoπ‘š^^ < π’ͺ(TeV).Weakening ispronounced forπ‘š^^ < π’ͺ(sub-TeV)
Recasting WZ-lvll
ATLAS analysis at 8TeV
ATLASarXiv:1603.02151
ü StrongcorrelationamongaTGC
ü π‘š^^ < ∞ isroughlysimilartoπ‘š^^ < π’ͺ(TeV).Weakening ispronounced forπ‘š^^ < π’ͺ(sub-TeV)
WW
CMS-SMP-14-016
WZ
ATLAS
1603.02151
ü π›Ώπœ… β€ž isstronglyconstrainedbyWW,notbyWZ
β€˜First’ recasting of 13TeV data on aTGC
WZ
arXiv:1606.04017
ATLAS analysis
ü Nodramaticimprovement.Moreorless similarto8TeV case.
Combine all (8TeV CMS + ATLAS and 13TeV ATLAS)
Profiled95%CLboundsontheeachaTGC
fromourcombinedfitwithdiff.mVV cut
Combine all (8TeV CMS + ATLAS and 13TeV ATLAS)
Profiled95%CLboundsontheeachaTGC
fromourcombinedfitwithdiff.mVV cut
Can be widely different
EFT vs UV model
π‘†π‘ˆ 2
…
Contino,Falkowski,Goertz,Grojean,Riva16’
forsimilardiscussion
triplet+singlet
𝑖
𝑔 Ø Ε“}
𝑖
𝑔
}
β„’r2H = 𝑉}Ε“ π‘”πœ…Øo 𝐽oΕ“} + πœ…Þß
π½Þ + 𝑉}¦ βˆ’ π‘”πœ…o 𝐽o
+ πœ…Þß π½Þ}
2
2
2
2
Integrate out Triplet and Singlet and match to
EFT coefficients
𝑐N®
𝛿𝑔ˆ,Ε  =
𝑔B + π‘”Ø B
𝑔B βˆ’ π‘”Ø B
Ø
𝑐oΕ‘
Λ†Λ†
𝑐őő
π›Ώπ‘š =
=
1
𝑔B
βˆ’
π‘”Ø B
𝑐\ βˆ’ 𝛿𝑣
1 Ø
𝛿𝑣 =
𝑐 oΕ‘
2
Ø
𝑐oΕ‘
BB
=
ˆBBˆ
πœ… Bo π‘šBN
3πœ…β€²o π‘šBN
π‘šBN
π‘šBN
B
B
= 0 𝑐\ =
𝑐 =
𝑐 = βˆ’4πœ†πœ…β€²o B 𝑐R = πœ…β€²o B
2 π‘šB^ o
2 π‘šB^ C
π‘š^
π‘š^
=
βˆ’2πœ… ØΕ‘ B
βˆ’πœ…β€²o πœ… ØΕ‘
Λ†Λ† +
𝑐Ø
oΕ‘ BB
π‘šBN
π‘šB^
π‘šBN
+ Ξ” = 0
π‘šB^
1
βˆ’ 𝑐őő
4
ˆBBˆ
π‘šBN
o πœ…β€² Ε‘
π‘šB^
Assumed LEP
bound is perfect
𝑔 B 𝑐\ βˆ’ 𝑔 Ø B𝛿𝑣 = 0 β†’ πœ…β€²o πœ…β€²Þ = βˆ’
Both triplet and singlet are
required to have dm = 0
=
βˆ’πœ… Ø
𝑔B
B
B πœ…o
Ø
2𝑔
𝛿𝑔ˆ,Ε  =
𝑔
βˆ’πœ…Bo
π›Ώπœ…β€ž = πœ† Ε  = 0
B
+ 𝑔′B π‘šBN
2𝑔′B π‘šB^
EFT vs UV model
π‘†π‘ˆ 2
…
(strongly vs weakly)
triplet+singlet
𝑖
𝑔 Ø Ε“}
𝑖
𝑔
β„’r2H = 𝑉}Ε“ π‘”πœ… Øo 𝐽oΕ“} + πœ…Þß
𝐽Þ
+ 𝑉}¦ βˆ’ π‘”πœ… o 𝐽o} + πœ…Þß π½Þ}
2
2
2
2
𝛿𝑔ˆ,Ε  =
βˆ’πœ… Bo
𝑔 B + 𝑔 Ø B π‘šBN
πœ… Bo
βˆβˆ’ B
π‘š^
2𝑔 Ø B π‘šB^
𝛿𝑔ˆ,Ε  = βˆ’0.009
↔
πœ…o
0.75
1.5
4.5
= = = π‘š^
1TeV
2TeV
6TeV
Weakly
coupled
Strongly
coupled
EFT works better for
a strong coupling
SimilarexerciseforWh appeared in
Contino,Falkowski,Goertz,Grojean,Riva16’
Illustration of EFT vs Direct
π‘†π‘ˆ 2
…
triplet+singlet
𝑖
𝑔 Ø Ε“}
𝑖
𝑔
β„’r2H = 𝑉}Ε“ π‘”πœ… Øo 𝐽oΕ“} + πœ…Þß
𝐽Þ
+ 𝑉}¦ βˆ’ π‘”πœ… o 𝐽o} + πœ…Þß π½Þ}
2
2
2
2
𝛿𝑔ˆ,Ε  =
βˆ’πœ… Bo
𝑔 B + 𝑔 Ø B π‘šBN
πœ… Bo
βˆβˆ’ B
π‘š^
2𝑔 Ø B π‘šB^
: EFT constrains
πœΏπ‘―
β„π’Žπ‘½
WZ-lvll @8TeV
Will become more
conservative with cuts
SimilarexerciseforWh appeared in
Contino,Falkowski,Goertz,Grojean,Riva16’