Advanced Engineering Mathematics, by Erwin Kreyszig 10th. Ed. Problem Set 9.3 No.1 (a)Let a a1, a2 , a 3 , b b1, b2 , b3 and c c1, c2 , c 3 la la1, la 2 , la 3 la b la2b3 la 3b2 iˆ la 3b1 la1b3 ˆj la1b2 la2b1 kˆ (1) a b a2b3 a3b2 iˆ a3b1 a1b3 ˆj a1b2 a2b1kˆ l a b la 2b3 la 3 b2 iˆ la 3 b1 la1b3 ˆj la1b2 la 2b1 kˆ (2) l b lb1, lb2 , lb 3 a l b a2lb3 a 3 lb2 iˆ a 3 lb1 a1lb3 ˆj a1lb2 a2lb1 kˆ la2b3 la 3b2 iˆ la 3b1 la1b3 ˆj la1b2 la2b1kˆ (3) From (1), (2) and (3) we know la b l a b a l b (b) (α) b c b1 c1 iˆ b2 c2 ˆj b3 c3 kˆ a b c a2 b3 c3 a 3 b2 c2 iˆ a3 b1 c1 a1b3 c3 ˆj a1b2 c2 a2 b1 c1 kˆ a2b3 a2c3 a3b2 a3c2 iˆ a3b1 a3c1 a1b3 a1c3 ˆj a1b2 a1c2 a2b1 a2 c1 kˆ (1) a b a2b3 a 3 b2 iˆ a3b1 a1b3 ˆj a1b2 a2b1 kˆ a c a2c3 a 3 c2 iˆ a3c1 a1c3 ˆj a1c2 a2c1 kˆ a b a c a2b3 a2c3 a3b2 a3c2 iˆ a3b1 a3c1 a1b3 a1c3 ˆj a1b2 a1c2 a2b1 a2 c1 kˆ (2) From (1) and (2) we know a b c a b a c (β) a b a1 b1 iˆ a2 b2 ˆj a3 b3 kˆ a b c a2 b2 c3 a3 b3 c2 iˆ a3 b3 c1 a1 b1c3 ˆj a1 b1c2 a2 b2 c1kˆ a2c3 b2c3 a3c2 b3 c2 iˆ a3c1 b3c1 a1c3 b1c3 ˆj a1c2 b1c2 a2 c1 b2c1 kˆ (1) a c a2c3 a 3 c2 iˆ a3c1 a1c3 ˆj a1c2 a2c1 kˆ b c b2c3 b3 c2 iˆ b3c1 b1c3 ˆj b1c2 b2c1 kˆ a c b c a2c3 b2c3 a3c2 b3c2 iˆ a3c1 b3c1 a1c3 b1c3 ˆj a1c2 b1c2 a2 c1 b2 c1 kˆ (2) From (1) and (2) we know a b c a c b c No.2 (i) b c or (ii)both b and c are parallel to a No.3 Let a a1, a2 , a 3 , b b1, b2 , b3 and c c1, c2 , c 3 (a) a b a2b3 a 3 b2 iˆ a3b1 a1b3 ˆj a1b2 a2b1 kˆ b a b2 a3 b3 a2 iˆ b3a1 b1a3 ˆj b1a2 b2 a1 kˆ a2b3 a3b2 iˆ a3b1 a1b3 ˆj a1b2 a2b1 kˆ ab (b) b c b2c3 b3 c2 iˆ b3c1 b1c3 ˆj b1c2 b2c1 kˆ a b c a1b2c3 b3 c2 a2 b3c1 b1c3 a3 b1c2 b2c1 a1b2c3 a1b3 c2 a2b3c1 a2b1c3 a3b1c2 a3b2c1 a1b2c3 a2b3c1 a3b1c2 a1b3 c2 a2b1c3 a3b2c1 (1) a b a2b3 a 3 b2 iˆ a3b1 a1b3 ˆj a1b2 a2b1 kˆ a b c a2b3c1 a3b2c1 a3b1c2 a1b3c2 a1b2c3 a2b1c3 a1b2c3 a2b3c1 a3b1c2 a1b3c2 a2b1c3 a3 b2c1 (2) From (1) and (2) we know a b c a b c No.4 (12) Prove a b a a b b a b 2 a b a b sin a a b b a b 2 On the other hand 2 2 a b 1 cos 2 Thus 2 2 2 2 a b a b cos 2 2 2 a b sin 2 a b sin a a b b a b 2 ab No.5 m r p r p m The moment keeps the same magnitude but the direction of rotation axis is reversed. No.6 v w r w r sin v d w r sin ; r sin d If d 2d v 2d The rotation rate become double. No.7 w 20 ˆj , r 20 ˆj v w r 20 ˆj 8iˆ 6 ˆj 160kˆ y w r x z No.8 w 10 iˆ ˆj , r 4iˆ 2 ˆj 2kˆ 2 iˆ ˆj kˆ Velocity v w r 10 iˆ ˆj 4iˆ 2 ˆj 2kˆ 1 1 0 2 4 2 2 10 2iˆ 2 ˆj 2kˆ 10 2 iˆ ˆj kˆ 2 No. 9 a b c a b c 0 a // b // c i.e., a , b , c are on the same plane. No. 10 11-23 a 1, 2, 0, b 2, 3, 0, c 2, 4, 1and d 3, 1, 5 No.11 iˆ (a) a b 1 ˆj 2 0 2 0 0 3 î 0 2 1 0 ˆj 3 1 2 2kˆ 2 3 k̂ kˆ 0 ˆj iˆ (b) b a 2 3 1 kˆ 0 3 0 0 2 î 0 1 2 0 ˆj 2 2 1 3kˆ 2 0 k̂ (c) a b 1 2 2 3 0 0 2 6 0 8 No.12 (a) 3c 32, 4, 1 6, 12, 3 2d 23, 1, 5 6, 2, 10 iˆ ˆj kˆ 3 c 2d 6 12 3 12 10 3 2 î 3 6 6 10 ˆj 2 6 6 12kˆ 6 2 10 120 6 î 18 60 ˆj 12 72kˆ 126 î 78 ˆj 60kˆ (b) 6d 63, 1, 5 18, 6, 30 iˆ ˆj kˆ 6d c 18 6 30 6 1 30 4 î 30 2 18 1 ˆj 4 18 2 6kˆ 2 4 1 6 120î 60 18 ˆj 72 12kˆ 126î 78 ˆj 60kˆ (c) 6d c 18, 6, 30 2, 4, 1 18 2 6 4 30 1 36 24 30 30 (d) 6c 62, 4, 1 12, 24, 6 6c d 12, 24, 6 3, 1, 5 12 3 24 1 6 5 36 24 30 30 No.13 (a) a b 1, 2, 0 2, 3, 0 1, 1, 0 c a b 2, 4, 1 1, 1, 0 iˆ kˆ ˆj 2 4 1 4 0 1 1 î 1 1 2 0 ˆj 1 2 1 4kˆ 1 1 0 0 1 î 1 0 ˆj 2 4kˆ î ˆj 2kˆ (b) a c 1, 2, 0 2, 4, 1 iˆ kˆ ˆj 1 2 0 2 1 0 4 î 0 2 1 1 ˆj 4 1 2 2kˆ 2 4 1 2 0î 0 1 ˆj 4 4kˆ 2î ˆj b c 2, 3, 0 2, 4, 1 iˆ kˆ ˆj 2 3 0 3 1 0 4 î 0 2 2 1 ˆj 4 2 2 3kˆ 2 4 1 3 0î 0 2 ˆj 8 6kˆ 3î 2 ˆj 2kˆ a c b c 2î ˆj 3î 2 ˆj 2kˆ iˆ ˆj 2kˆ No.14 4b 4 2, 3, 0 8, 12, 0 3c 32, 4, 1 6, 12, 3 4b 3c 8, 12, 0 6, 12, 3 iˆ ˆj 8 12 kˆ 0 12 3 0 0 12 î 0 6 8 3 ˆj 12 8 6 12kˆ 6 12 3 36 0 î 0 24 ˆj 96 72kˆ 36î 24 ˆj 24kˆ 12c 122, 4, 1 24, 48, 12 12c b 24, 48, 12 2, 3, 0 iˆ ˆj kˆ 2 3 0 24 48 12 48 0 12 3 î 12 2 24 0 ˆj 3 24 2 48kˆ 0 36 î 24 0 ˆj 72 96kˆ 36î 24 ˆj 24kˆ 4b 3c 12c b 36î 24 ˆj 24kˆ 36î 24 ˆj 24kˆ 0 No.15 a d 1, 2, 0 3, 1, 5 4, 3, 5 d a 3, 1, 5 1, 2, 0 4, 3, 5 a d d a ad d a 0 No.16 From prob. 13, b c 3î 2 ˆj 2kˆ b c d 3, 2, 2 3, 1, 5 3 3 2 1 2 5 9 2 10 3 iˆ ˆj kˆ c d 2 4 1 4 5 1 1 iˆ 1 3 2 5 ˆj 1 2 3 4kˆ 3 1 5 20 1iˆ 3 10 ˆj 2 12kˆ 21iˆ 13 ˆj 10kˆ b c d 2, 3, 0 21, 13, 10 2 21 3 13 0 10 42 39 0 3 No.17 (a) From prob. 16, b c 3î 2 ˆj 2kˆ b c d 3, 2, 2 3, 1, 5 iˆ ˆj kˆ 3 1 5 3 2 2 2 5 2 1 iˆ 2 3 3 5 ˆj 1 3 3 2kˆ 10 2iˆ 6 15 ˆj 3 6kˆ 8iˆ 21 ˆj 9kˆ (b) From prob. 16, c d 21iˆ 13 ˆj 10kˆ b c d 2, 3, 0 21, 13, 10 iˆ ˆj 2 3 kˆ 0 3 10 0 13 iˆ 0 21 2 10 ˆj 13 2 21 3kˆ 21 13 10 30 0iˆ 0 20 ˆj 26 63kˆ 30iˆ 20 ˆj 89kˆ No.18 (a) From prob. 11, a b kˆ a b a 0, 0, 1 1, 2, 0 iˆ ˆj kˆ 0 0 1 0 0 1 2 iˆ 1 1 0 0 ˆj 2 0 1 0kˆ 1 2 0 0 2iˆ 1 0 ˆj 0 0kˆ 2iˆ ˆj (b) From prob. 11, b a kˆ a b a 1, 2, 0 0, 0, 1 kˆ iˆ ˆj 0 0 1 1 2 0 2 1 0 0 iˆ 0 0 1 1 ˆj 0 1 0 2kˆ 2 0iˆ 0 1 ˆj 0 0kˆ 2iˆ ˆj No.19 (a) ˆj iˆ kˆ ˆj iˆ kˆ j ˆj 1 (b) b c d 2, 3, 0 21, 13, 10 No.20 (a)From prob. 1(a) a b kˆ From 16 c d 21iˆ 13 ˆj 10kˆ a b c d kˆ 21iˆ 13 ˆj 10kˆ iˆ kˆ ˆj 0 0 1 0 10 1 13 iˆ 1 21 0 10 ˆj 13 0 21 0kˆ 21 13 10 0 13 iˆ 21 0 ˆj 0 0kˆ 13 iˆ 21 ˆj (b) b d 2, 3, 0 3, 1, 5 iˆ ˆj kˆ 2 3 0 3 5 0 1 iˆ 0 3 2 5 ˆj 1 2 3 3kˆ 3 1 5 15 0 iˆ 0 10 ˆj 2 9kˆ 15 iˆ 10 ˆj 7kˆ a b d 1, 2, 0 15, 10, 7 115 210 0 7 15 20 5 a b d c 52, 4, 1 10, 20, 5 b c 2, 3, 0 2, 4, 1 iˆ ˆj 2 3 kˆ 0 3 1 0 4 iˆ 0 2 2 1 ˆj 4 2 2 3kˆ 2 4 1 3 0 iˆ 0 2 ˆj 8 6kˆ 3 iˆ 2 ˆj 2kˆ a b c 1, 2, 0 3, 2, 2 1 3 2 2 0 2 3 4 1 a b cd 13, 1, 5 3, 1, 5 a b d c a b cd 10, 20, 5 3, 1, 5 13, 21, 0 13iˆ 21 ˆj No.21 (a) 2b 2 2, 3, 0 4, 6, 0 4c 42, 4, 1 8, 16, 4 ˆj iˆ 2b 4c 4 6 kˆ 0 6 4 0 16 iˆ 0 8 4 4 ˆj 16 4 8 6kˆ 8 16 4 24 0 iˆ 0 16 ˆj 64 48kˆ 24iˆ 16 ˆj 16kˆ ˆj kˆ iˆ (b) b c 2 3 0 2 4 1 3 1 0 4 iˆ 0 2 2 1 ˆj 4 2 2 3kˆ 3 0 iˆ 0 2 ˆj 8 6kˆ 3iˆ 2 ˆj 2kˆ b c 32 22 22 8 b c 8 17 iˆ ˆj kˆ (c) c b 2 4 1 2 3 0 9 4 4 17 4 0 1 3 iˆ 1 2 2 0 ˆj 3 2 2 4kˆ 0 3 iˆ 2 0 ˆj 6 8kˆ 3iˆ 2 ˆj 2kˆ b c 32 2 2 22 9 4 4 17 8 c b 8 17 No.22 (a) a b 1, 2, 0 2, 3, 0 3, 5, 0 c b 2, 4, 1 2, 3, 0 4, 7 1 d b 3, 1, 5 2, 3, 0 5, 4, 5 3 5 a b c b d b 4 0 7 1 5 4 5 3 7 5 5 1 5 0 4 4 3 1 4 4 5 5 5 7 0 105 25 0 12 100 0 8 1 2 0 b a c d 2 4 1 3 1 5 1 4 5 2 1 3 0 1 2 1 1 1 2 2 5 3 4 0 20 6 0 1 20 0 5 No.23 (a) b b 2, 3, 0 2, 3, 0 iˆ ˆj kˆ 2 3 0 2 3 0 3 0 0 3iˆ 0 2 2 0 ˆj 3 2 2 3kˆ 0 0iˆ 0 0 ˆj 6 6kˆ 0 (b) b c 2, 3, 0 2, 4, 1 4, 7, 1 c b 2, 4, 1 2, 3, 0 4, 7, 1 b c c b 4, 7, 1 4, 7, 1 ˆj kˆ 4 7 1 iˆ 4 7 1 7 1 1 7 iˆ 1 4 4 1 ˆj 7 4 4 7kˆ 7 7iˆ 4 4 ˆj 28 28kˆ 0 (c) b b 2, 3, 0 2, 3, 0 2 2 3 3 0 0 4 9 0 13 No. 24 (13) Prove b c d b d c b c d Set b b1, b2 , b3 c c1, c 2 , c3 d d1, d 2 , d3 c d c2 d 3 c3d 2 iˆ c3d 1c1d 3 ˆj c1d 2 c 2 d1 kˆ b c d b2 c1d 2 c 2 d1 b3 c3d 1c1d3 iˆ b3 c2 d3 c3d 2 b1c1d 2 c 2 d1 ˆj b1c3d 1c1d3 b2 c2 d3 c3d 2 kˆ b2 c1d 2 c 2 d1 b 3 c1d 3 c3d 1 iˆ b3 c2 d3 c3d 2 b1c 2 d1 c1d 2 ˆj b1c3d 1c1d3 b2 c3d 2 c2 d3 kˆ (1) On the other hand b d c b c d b1d1 b2d 2 b3d3 c1iˆ b1d1 b2d 2 b3d3 c2 ˆj b1d1 b2 d 2 b3d3 c3kˆ b1c1 b2c2 b3c3 d1iˆ b1c1 b2c2 b3c3 d 2 ˆj b1c1 b2c2 b3c3 d3kˆ b1c1d1c1 b2c1d 2 b3c1d3 b1c1d1 b2c2 d1 b3c3d1 iˆ b1c2 d1 b2c2 d 2 b3c2 d3 b1c1d 2 b2c2 d 2 b3c3d 2 ˆj b1c3d1 b2c3d 2 b3c3d 3 b1c1d 3 b2c2 d 3 b3c3d 3 kˆ b2c1d 2 b3c1d3 b2c2d1 b3c3d1 iˆ b1c2d1 b3c2d3 b1c1d 2 b3c3d 2 ˆj b1c3d1 b2c3d 2 b1c1d3 b2c2 d3 kˆ b2 c1d 2 c2 d1 b3 c1d3 c3d1 iˆ b1c2d1 c1d 2 b3 c2d3 c3d 2 ˆj b1c3d1 c1d3 b2 c3d 2 c2 d3 kˆ (2) From (1) and (2) thus we prove b c d b d c b c d (14) Prove a b c d a b d c a b c d a b a2b3 a3b2 iˆ a3b1 a1b3 ˆj a1b2 a2b1kˆ c d c2c3 c3d2 iˆ c3d1 c1d3 ˆj c1d2 c2d1kˆ a b c d a3b1 a1b3 c1d2 c2d1 a1b2 a2b1c3d1 c1d3 iˆ a1b2 a2b1 c2c3 c3d 2 a2b3 a3b2 c1d 2 c2 d1 ˆj a2b3 a3b2 c3 d1 c1d 3 a3b1 a1b3 c2 c3 c3 d 2 kˆ a1b2 a2b1 c1d3 c3d1 a3b1 a1b3 c1d 2 c2 d1 iˆ a1b2 a2b1 c2c3 c3d 2 a2b3 a3b2 c2 d1 c1d 2 ˆj a2b3 a3b2 c3d1 c1d3 a3b1 a1b3 c3d 2 c2c3 kˆ On the other hand (1) a1 a b d b1 d1 a1 a b c b1 c1 a a2 a3 b2 b3 a1b2 d 3 a2b3d1 a3b1d 2a3b2 d 1a2b1d 3a1b3d 2 d2 d 3 a2 a3 b2 b3 a1b2c 3 a2b3c1 a3b1c 2 a3b2c1a2b1c 3 a1b3c 2 c2 c3 b dc a b cd a1b2 d 3a2b3d1 a3b1d 2a3b2 d 1a2b1d 3a1b3d 2 c1 ˆ i a1b2 c 3 a2b3c1 a3b1c 2 a3b2 c1a2b1c 3 a1b3c 2 d1 1 ○ a1b2 d 3 a2b3d1 a3b1d 2a3b2 d 1a2b1d 3a1b3d 2 c2 ˆ j a1b2 c 3 a2b3c1 a3b1c 2 a3b2 c1a2b1c 3 a1b3c 2 d 2 2 ○ a1b2 d 3 a2b3d1 a3b1d 2a3b2 d 1a2b1d 3a1b3d 2 c3 ˆ k a b c a b c a b c a b c a b c a b c d 1 2 3 2 3 1 3 1 2 3 2 1 2 1 3 1 3 2 3 3 ○ 1 In ○ a1b2d 3a2b3d1 a3b1d 2a3b2d1a2b1d 3a1b3d 2 c1 a1b2c3 a2b3c1 a3b1c 2 a3b2c1a2b1c3a1b3c 2 d1 a1b2c1d 3a2b3c1d1 a3b1c1d 2a3b2c1d 1a2b1c1d 3a1b3c1d 2 a1b2c3d1 a2b3c1d1 a3b1c 2 d1 a3b2c1d1 a2b1c3d1 a1b3c 2 d1 a1b2c1d 3 a3b1c1d 2 a2b1c1d 3 a1b3c1d 2a1b2c3d1 a3b1c 2 d1 a2b1c3d1 a1b3c 2 d1 a1b2 a2b1 c1d 3 a3b1 a1b3 c1d 2a1b2 a2b1 c3d1 a3b1 a1b3 c2d1 a1b2 a2b1 c1d 3c 3 d1 a3b1 a1b3 c1d 2c2 d 1 2 In ○ a1b2d 3a2b3d1 a3b1d 2a3b2d1a2b1d 3a1b3d 2 c2 a1b2c3a2b3c1 a3b1c 2 a3b2c1a2b1c3a1b3c 2 d2 a1b2c2d 3 a2b3c2d1 a3b1c2d 2 a3b2c2d1 a2b1c2d 3 a1b3c2d 2 a1b2c3d 2 a2b3c1d 2 a3b1c 2 d 2 a3b2c1d 2 a2b1c3d 2 a1b3c 2 d 2 a1b2c2d 3 a2b3c2d1 a3b2c2d1 a2b1c2d 3 a1b2c3d 2 a2b3c1d 2 a3b2c1d 2 a2b1c3d 2 a1b2 a 2 b1 c 2 d 3a 2 b3 a3b2 c 2 d1 a1b2 a 2 b1 c 3 d 2 a 2 b3 a 2 b3 c1d 2 a1b2 a2b1 c2d 3c3d 2 a2b3 a3b2 c2d1 c1d 2 3 In ○ a1b2 d 3a2b3d1 a3b1d 2a3b2 d 1a2b1d 3a1b3d 2 c3 a1b2c 3 a2b3c1 a3b1c 2 a3b2c1a2b1c 3 a1b3c 2 d3 a1b2c3d 3 a2b3c3d1 a3b1c3d 2a3b2c3d 1a2b1c3d 3a1b3c3d 2 a1b2c 3 d3 a2b3c1d3 a3b1c 2 d3 a3b2c1d3 a2b1c 3 d3 a1b3c 2 d3 a2b3c3d1 a3b1c3d 2 a3b2c3d1 a1b3c3d 2 a2b3c1d3 a3b1c 2 d3 a3b2c1d3 a1b3c 2 d3 a2b3 a3b2 c3d1 a3b1 a1b3 c3d 2a2b3 a3b2 c1d3 a3b1 a1b3 c2 d3 a2b3 a3b2 c3d1 c1d3 a3b1 a1b3 c3d 2c2 d3 Therefore a b d c a b c d a1b2 a2b1 c1d 3c3 d1 a3b1 a1b3 c1d 2c2 d 1 iˆ a1b2 a2b1 c2 d 3c3d 2 a2b3 a3b2 c2 d1 c1d 2 ˆj a2b3 a3b2 c3d1 c1d3 a3b1 a1b3 c3d 2c 2 d3 kˆ Compare (1) and (2) a b c d a b d c a b c d (2) Q.E.D (15) a b c d a a1, a2 , a3 , b b1, b2 , b3 , c c1, c2 , c3 , d d1, d 2 , d 3 iˆ a b a1 ˆj kˆ a2 a3 a2b3 a3b2 iˆ a3b1a1b3 ˆj a1b2 a2b1 kˆ b1 b 2 b3 c d c2 d 3 c3d 2 iˆ c3d1 c1d 3 ˆj c1d 2 c2 d1 kˆ a b c d a2b3 a3b2 iˆ a3b1a1b3 ˆj a1b2 a2b1kˆ c2d3 c3d2 iˆ c3d1 c1d3 ˆj c2d1 c1d2 kˆ a2b3 a3b2 c2 d 3 c3d 2 a3b1a1b3 c3d1 c1d 3 a1b2 a2b1 c1d 2 c2 d1 a c b d a d b c a1c1 a2c2 a3c3 b1d1 b2d 2 b3d3 a1d1 a2 d 2 a3d3 b1c1 b2c2 b3c3 a1c1b1d1 a2 c2b1d1 a3c3b1d1 a1c1b2 d 2 a2 c2b2 d 2 a3c3b2 d 2 a1c1b3d 3 a2 c2b3d 3 a3c3b3d 3 a1d1b1c1 a2d 2b1c1 a3d3b1c1 a1d1b2c2 a2d 2b2c2 a3d3b2c2 a1d1b3c3 a2d 2b3c3 a3d3b3c3 a2b1c2 d1 a3b1c3d1 a1b2 c1d 2 a3b2 c3d 2 a1b3c1d 3 a2b3c2 d 3 a2b1c1d 2 a3b1c1d3 a1b2c2d1 a3b2c2d3 a1b3c3d1 a2b3c3d 2 a2b1 c2 d1 c1d 2 a3b1 c3d1 c1d 3 a1b2 c1d 2 c2 d1 a3b2 c3d 2 c2 d 3 a1b3 c1d3 c3d1 a2b3 c2d3 c3d 2 a1b2 a2b1 c1d 2 c2d1 a3b1 a1b3 c3d1 c1d3 a2b3 a3b2 c2d3 c3d 2 a b c d a c b d a d b c (16) a b c b c a c a b c b a a c b a a1, a2 , a3 , b b1, b2 , b3 , c c1, c2 , c3 a1 a b c b1 c1 a2 a3 b 2 b3 a1b2c3 a2b3c1 a3b1c2 a1b3c2 a2b1c3 a3b2c1 c 2 c3 (1) b1 b c a c1 a1 b 2 b3 c 2 c3 a3b1c2 a1b2c3 a2b3c1 a2b1c3 a3b2c1 a1b3c2 a2 a3 (2) c1 c a b a1 b1 c 2 c3 a2 a3 a2b3c1 a3b1c2 a1b2c3 a3b2c1 a1b3c2 a2b1c3 b 2 b3 (3) From (1), (2) and (3) we know a b c b c a c a b c b a c a b a c b a b c No.25 p 2, 3, 0, Q : 2, 1, 0, A; 0, 3, 0 QA r 2, 2, 0 ˆj kˆ iˆ mrp 2 2 5 2 0 5 2iˆ 5 2 2 0 ˆj 2 2 2 2kˆ 2 2 0 0 10iˆ 10 0 ˆj 4 4kˆ 10iˆ 10 ˆj 8kˆ m 102 102 82 100 100 64 264 No.26 p 1, 0, 3, Q : 2, 0, 3, A; 4, 3, 5 QA r 2, 3, 2 iˆ ˆj kˆ m r p 2 3 2 3 3 2 0iˆ 2 1 2 3 ˆj 0 2 1 3kˆ 1 0 3 9 0iˆ 2 6 ˆj 0 3kˆ 9iˆ 4 ˆj 3kˆ m 9 2 42 32 81 16 9 106 No. 27 Four vertices p1 : 4, 2, 0, p2 : 10, 4, 0, p3 : 5, 4, 0, p4 : 11, 6, 0 P3 P4 P2 P1 p1 p2 10 4, 4 2, 0 0 6, 2, 0 p1 p3 5 4, 4 2, 0 0 1, 2, 0 iˆ ˆj kˆ Parallelogram area p1 p2 p1 p3 6 2 0 12 2kˆ 10 1 2 0 No.28 Set A : 2, 1, 0, B:5, 1, 0, C : 8, 2, 0, D : 4, 3, 0 The vertices of the quadrangle are the midpoints of AB , 1 1 0 0 P1 : 2 5 , , 3.5, 0, 0 2 2 2 1 2 , 0 0 6.5, 0.5, 0 BC , P2 : 5 8 , 2 2 2 CD, P3 : 8 4 , 2 3 , 0 0 6, 2.5, 0 2 2 2 AD, P4 : 2 4 , 1 3 , 0 0 3, 2, 0 2 2 2 P1P 2 3, 0.5, 0, P 2 P3 0.5, 2, 0, P 4 P3 3, 0.5, 0, P1P4 0.5, 2, 0 P1P 2 // P 4 P3 , P1P4 // P2 P3 The quadrangle P1P2 P3 P4 is a parallelogram. iˆ ˆj P1P 2 P1P4 3, 0.5, 0 0.5, 2, 0 3 0.5 0.5 2 kˆ 0 0 0.5 0 0 2iˆ 0 0.5 3 0 ˆj 2 3 0.5 0.5kˆ 6 0.25kˆ 6.25kˆ The area is P1P 2 P1P4 6.25 No. 29 Set P1 : (0, 0, 1), P2 : (2, 0, 5), P3 (2, 3, 4) P1P2 2 0, 0 0, 5 1 2, 0, 4 P1P 3 2 0, 3 0, 4 1 2, 3, 3 iˆ P1P2 P1P 3 2 2 ˆj kˆ 0 4 0 3 4 3iˆ 4 2 2 3 ˆj 3 2 2 0kˆ 3 3 0 12iˆ 8 6 ˆj 6 0kˆ 12iˆ 2 ˆj 6kˆ The area of the triangle is 1 P P P P 1 2 1 2 1 3 2 No. 30 A : 1, 2, 1 4 122 2 2 62 B : 4, 2, 2 144 4 36 184 46 2 2 C : 0, 8, 4 AC 0 1, 8 2, 4 1 1, 6, 15 4 4 AB 4 1, 2 2, 2 1 3, 0, 9 4 4 î ˆj k̂ 0 9 4 1 6 15 4 The plane normal vector N AB AC 3 0 15 9 6iˆ 9 1 3 15 ˆj 6 3 1 0kˆ 4 4 4 4 0 27 iˆ 9 45 ˆj 18 0kˆ 27 iˆ 9 ˆj 18kˆ 2 4 4 2 The plane is 27 x 9 y 18 z d 2 and A : 1, 2, 1 belongs to the plane. 4 27 1 9 2 18 1 d 2 4 27 x 9 y 18z 0 2 d 0 Or 3 x 2 y 4 z 0 另解 Set the plane x by cz d And A : 1, 2, 1 , B : 4, 2, 2, C : 0, 8, 4 belong to the plane. 4 1 2b 1 c d 4 1 ○ 4 2b 2c d 8b 4c d 2 ○ 3 ○ 1 -○ 2 ○ 9c3 4 2 -○ 3 ○ 6b 6c 4 Since c 4 , 3 3 From ○ Or c4 3 b2 3 d 0 The plane equation is x 2 y 4z 0 3 3 Or 3 x 2 y 4 z 0 No.31 Find the plane through (1, 3, 4), (1, -2, 6), (4, 0, 7) Set P1: ( 1, 3, 4 ), P2 : ( 1, 2, 6 ), P3 : ( 4, 0, 7 ) P1P2 0, 5, 2, P1P3 3, 3, 3 î ˆj k̂ The normal is P1P2 P1P3 0, 5, 2 3, 3, 3 0 5 2 3 3 3 5 3 2 3î 2 3 0 3ˆj 3 0 3 5k̂ 15 6iˆ 6 0 ˆj 0 15kˆ 9iˆ 6 ˆj 15kˆ The plane equation is 9 x 6 y 15 z d Substitute P1: ( 1, 3, 4 ) into the above equation 9 1 6 3 15 4 d ; d 69 Therefore, 9 x 6 y 15 z 69 Or 3x 2 y 5 z 23 另解 Set any point on the plane is P : x, y, z P1P x 1, y 3, z 4, P1P2 0, 5, 2, P1P3 3, 3, 3 P1P P1P2 P1P3 0; x 1, y 3, z 4 0, 5, 2 3, 3, 3 0 x 1 y 3 z 4 0 5 2 0 3 3 3 x 1 5 3 y 3 2 3 z 4 3 0 x 1 2 3 0 y 3 3 3 5 z 4 0 15x 1 6 y 3 0 6x 1 0 15z 4 0 15 x 15 6 y 18 6 x 6 15 z 60 0 9 x 6 y 15 z 69 0 9 x 6 y 15 z 69 Or 3x 2 y 5 z 23 No.32 Find the volume of the parallelepiped edged by the vectors iˆ ˆj , 2iˆ 2kˆ, and 2iˆ 3kˆ, The volume is the absolute value of iˆ ˆj 2iˆ 2kˆ 2iˆ 3kˆ 1 1 2 0 0 2 1 0 3 1 2 2 0 0 2 1 2 0 2 1 3 2 0 0 2 0 3 0 4 0 0 6 0 10 The volume is 10 No. 33 Set p1 : 1, 1, 1 p2 : 5, 7, 3 p 3 : 7, 4, 8 p4 : 10, 7, 4 p1 p2 5 1, 7 1, 3 1 4, 8, 2 p1 p3 7 1, 4 1, 8 1 6, 3, 7 p1 p4 10 1, 7 1, 4 1 9, 6, 3 4 8 2 P1P2 P1P3 P1P4 6 9 3 7 6 3 4 3 3 8 7 9 2 6 6 4 7 6 6 8 3 9 3 2 36 504 72 168 144 54 474 The volume of the tetrahedron is 1 P1P2 P1P3 P1P4 474 79 6 6 No. 34 Set p1 : 1, 3, 6 p2 : 3, 7, 12 p 3 : 8, 8, 9 p4 : 2, 2, 8 p1 p2 3 1, 7 3, 12 6 2, 4, 6 p1 p3 8 1, 8 3, 9 6 7, 5, 3 p1 p4 2 1, 2 3, 8 6 1, 1, 2 2 4 6 P1P2 P1P3 P1P4 7 5 3 1 1 2 2 5 2 4 3 1 6 1 7 2 3 1 7 4 2 1 5 6 20 12 42 6 56 30 90 The volume of the tetrahedron is 1 P1P2 P1P3 P1P4 90 15 6 6 No. 35
© Copyright 2026 Paperzz