EC 936 ECONOMIC POLICY MODELLING LECTURE 2: PART I UPDATING MATRICES: i: BIPROPORTIONAL (RAS) METHOD [DEMING & STEPHAN, 1940; LEONTIEF, 1941; STONE, 1962; BACHARACH, 1970] MATRIX BALANCING ISSUES • TYPE I & TYPE II PROBLEMS: • I: AMENDING MATRIX ENTRIES TO CONFORM TO NEW ACCOUNT TOTALS • II: AMENDING MATRIX ENTRIES WHEN ACCOUNT TOTALS ARE UNKNOWN, BUT ARE GOVERNED BY KNOWN ACCOUNTING CONSTRAINTS RAS AND TYPE I PROBLEMS Input-output transactions matrix, U.S. 2002 1 2 3 4 5 6 7 Agriculture Mining Construction Manufacturing Trade, Transport Services Other Gross output 1 72028 703 1168 40495 23899 37151 154 271182 7 1653 7909 42456 198600 97013 432413 26458 Gross Output 271182 184556 1032363 3817360 2683436 9114939 2076198 184556 1032363 3817360 2683436 9114939 2076198 19180034 2 361 8611 6621 17122 12207 46606 1008 3 4 2763 145716 9234 140728 718 12208 253489 1343085 103373 360139 152787 543989 410 31210 5 6 997 7406 63095 2224 15697 74277 132739 424488 220365 239088 508815 2513262 52162 79038 Technical coefficient matrix, U.S. 2002 1 2 3 4 5 6 7 Agriculture Mining Construction Manufacturing Trade, Transport Services Other 1 0.2656 0.0026 0.0043 0.1493 0.0881 0.1370 0.0006 2 0.0020 0.0467 0.0359 0.0928 0.0661 0.2525 0.0055 3 0.0027 0.0089 0.0007 0.2455 0.1001 0.1480 0.0004 4 0.0382 0.0369 0.0032 0.3518 0.0943 0.1425 0.0082 5 0.0004 0.0235 0.0058 0.0495 0.0821 0.1896 0.0194 6 0.0008 0.0002 0.0081 0.0466 0.0262 0.2757 0.0087 7 0.0008 0.0038 0.0204 0.0957 0.0467 0.2083 0.0127 PROBLEM: HOW TO UPDATE A TRANSACTIONS MATRIX WHEN ONLY THE GROSS OUTPUT FIGURES ARE KNOWN Gross output 2002 1 2 3 4 5 6 7 Agriculture Mining Construction Manufacturing Trade, Transport Services Other Gross output 2006 271,182 184,556 1,032,363 3,817,360 2,683,436 9,114,939 2,076,198 319,045 497,343 1,392,907 4,911,868 3,554,657 11,426,365 2,693,408 19,180,034 24,735,592 SOME BASIC DEFINITIONS Transactions: zij Gross output: Xj zij Input-output (technical) coefficients: aij = _______ Xj For rectangular matrices (m≠n) min s.t. for i = 1,2,…,m for j = 1,2,…,n Technical coefficient matrix, U.S. 2006 1 2 1 Agriculture 0.2441 0.0000 2 Mining 0.0019 0.1312 3 Construction 0.0035 0.0002 4 Manufacturing 0.1867 0.0961 5 Trade, Transport 0.0801 0.0390 6 Services 0.0905 0.1340 7 Other 0.0008 0.0036 3 0.0014 0.0066 0.0010 0.2686 0.1100 0.1305 0.0016 5 0.0001 0.0310 0.0039 0.0580 0.0721 0.1908 0.0140 6 0.0018 0.0001 0.0072 0.0554 0.0341 0.2987 0.0090 7 0.0006 0.0062 0.0242 0.1028 0.0455 0.2098 0.0145 RAS results derived from 2002 technical coefficient matrix 1 2 3 4 1 Agriculture 0.2451 0.0015 0.0026 0.0362 2 Mining 0.0046 0.0672 0.0169 0.0672 3 Construction 0.0033 0.0221 0.0006 0.0025 4 Manufacturing 0.1442 0.0728 0.2526 0.3494 5 Trade, Transport 0.0877 0.0535 0.1061 0.0965 6 Services 0.1220 0.1828 0.1404 0.1305 7 Other 0.0006 0.0043 0.0004 0.0082 5 0.0003 0.0423 0.0045 0.0485 0.0830 0.1716 0.0194 6 0.0009 0.0005 0.0076 0.0549 0.0319 0.3001 0.0104 7 0.0008 0.0076 0.0174 0.1036 0.0521 0.2080 0.0140 Absolute error in technical coefficients 1 2 1 Agriculture 0.0010 0.0015 2 Mining 0.0027 0.0640 3 Construction 0.0002 0.0219 4 Manufacturing 0.0424 0.0233 5 Trade, Transport 0.0076 0.0145 6 Services 0.0316 0.0487 7 Other 0.0003 0.0007 4 0.0012 0.0073 0.0006 0.0167 0.0071 0.0025 0.0067 5 0.0003 0.0114 0.0006 0.0094 0.0109 0.0191 0.0054 6 0.0009 0.0004 0.0004 0.0004 0.0022 0.0013 0.0014 7 0.0002 0.0014 0.0068 0.0008 0.0067 0.0018 0.0005 Percentage absolute errors in technical coefficients 1 2 3 4 1 Agriculture 0.0042 640.2892 0.9113 0.0350 2 Mining 1.4270 0.4880 1.5545 0.0980 3 Construction 0.0529 104.1330 0.4334 0.3293 4 Manufacturing 0.2274 0.2425 0.0594 0.0503 5 Trade, Transport 0.0945 0.3712 0.0355 0.0688 6 Services 0.3492 0.3637 0.0763 0.0196 7 Other 0.3116 0.2055 0.7411 0.4469 5 3.3301 0.3667 0.1615 0.1625 0.1512 0.1003 0.3864 6 0.4928 3.0003 0.0497 0.0078 0.0642 0.0044 0.1599 7 0.2794 0.2276 0.2806 0.0079 0.1468 0.0084 0.0365 3 0.0013 0.0103 0.0004 0.0160 0.0039 0.0100 0.0012 4 0.0350 0.0745 0.0019 0.3327 0.1037 0.1280 0.0149 Technical coefficient matrix, U.S. 2005 1 2 1 Agriculture 0.2292 0.0000 2 Mining 0.0017 0.1438 3 Construction 0.0051 0.0002 4 Manufacturing 0.1965 0.0879 5 Trade, Transport 0.0847 0.0434 6 Services 0.0872 0.1319 7 Other 0.0008 0.0033 3 0.0015 0.0062 0.0010 0.2603 0.1046 0.1268 0.0016 5 0.0001 0.0367 0.0037 0.0546 0.0728 0.1821 0.0133 6 0.0017 0.0001 0.0071 0.0563 0.0346 0.2880 0.0086 7 0.0007 0.0066 0.0215 0.1011 0.0504 0.2097 0.0157 RAS results derived from 2003 technical coefficient matrix 1 2 3 4 1 Agriculture 0.2116 0.0000 0.0015 0.0350 2 Mining 0.0015 0.1756 0.0084 0.0416 3 Construction 0.0018 0.0001 0.0009 0.0011 4 Manufacturing 0.1285 0.0950 0.2520 0.2344 5 Trade, Transport 0.0591 0.0491 0.0858 0.0645 6 Services 0.0521 0.1309 0.1050 0.0714 7 Other 0.0005 0.0044 0.0015 0.0072 5 0.0002 0.0631 0.0040 0.0737 0.0949 0.2039 0.0152 6 0.0037 0.0002 0.0075 0.0824 0.0426 0.3083 0.0104 7 0.0016 0.0089 0.0212 0.1377 0.0674 0.2010 0.0172 Absolute error in technical coefficients 1 2 1 Agriculture 0.0176 0.0000 2 Mining 0.0002 0.0317 3 Construction 0.0033 0.0000 4 Manufacturing 0.0680 0.0071 5 Trade, Transport 0.0257 0.0058 6 Services 0.0352 0.0010 7 Other 0.0003 0.0010 4 0.0040 0.0247 0.0007 0.0895 0.0382 0.0499 0.0065 5 0.0001 0.0264 0.0003 0.0192 0.0222 0.0218 0.0020 6 0.0020 0.0001 0.0004 0.0261 0.0080 0.0203 0.0018 7 0.0009 0.0023 0.0002 0.0366 0.0170 0.0087 0.0015 Percentage absolute errors in technical coefficients 1 2 3 4 1 Agriculture 0.0767 1.0755 0.0087 0.1030 2 Mining 0.0942 0.2205 0.3565 0.3730 3 Construction 0.6401 0.2473 0.1413 0.3743 4 Manufacturing 0.3463 0.0806 0.0321 0.2762 5 Trade, Transport 0.3029 0.1333 0.1797 0.3719 6 Services 0.4031 0.0077 0.1720 0.4113 7 Other 0.3426 0.3076 0.0251 0.4768 5 0.6248 0.7209 0.0859 0.3511 0.3046 0.1198 0.1471 6 1.1582 0.7438 0.0499 0.4645 0.2320 0.0703 0.2064 7 1.4291 0.3567 0.0114 0.3621 0.3379 0.0416 0.0962 3 0.0000 0.0022 0.0001 0.0084 0.0188 0.0218 0.0000 4 0.0390 0.0663 0.0018 0.3239 0.1026 0.1212 0.0137 MAD = MAPE = RAS AND TYPE II PROBLEMS Use Diagonal Similarity Scaling (DSS) Method s.t. EC 936 ECONOMIC POLICY MODELLING LECTURE 2: PART I UPDATING MATRICES: ii: CROSS-ENTROPY METHOD [GOLAN ET AL, 1994; ROBINSON ET AL, 2001] The entropy problem is to find a new set of A coefficients which minimize the so-called Kullback-Leibler (1951) measure of the ‘cross entropy’ (CE) distance between the prior A and the new estimated coefficient matrix A*. subject to Source: Bwanakare (2006), p. 240 RAS vs CROSS ENTROPY METHODS (McDougall, 1999) • The RAS is an entropy optimization method, and has long been known to be so. • For the matrix filling problem, in general, the entropy optimization method of choice is proportional allocation. • For the matrix balancing problem, in general, the entropy optimization method of choice is the RAS. • If, following the GCE approach, we treat matrix elements as expected values of discrete random variables, the method of choice (in the absence of distributional data) is equivalent to the RAS. • Entropy theory may fruitfully be used, not in attempting to supplant the RAS, but in extending and adapting it to problems that do not well fit the traditional matrix balancing framework. EC 936 ECONOMIC POLICY MODELLING LECTURE 2: PART II CALIBRATING SAMS: ERRORS, INCOMPLETE & INCONSISTENT INFORMATION [STONE, CHAPERNOWNE, MEADE 1942; STONE 1977; BYRON 1978] G = 1 0 0 1 -1 0 0 0 1 0 0 1 0 0 0 0 x= 1 0 0 1 0 0 0 0 1 0 0 1 0 -1 0 0 220 390 100 50 750 130 200 350 30 725 420 250 240 175 560 50 140 70 60 130 130 -1 0 0 0 0 0 0 0 0 1 0 -1 1 0 0 0 0 1 0 0 1 0 0 0 Gx = 0 1 0 0 1 0 0 0 0 1 0 0 1 -1 0 0 10 -15 0 -30 65 0 0 -100 0 -1 0 0 0 0 0 0 0 0 0 -1 0 0 0 1 v= 0 0 0 0 -1 0 0 1 0 0 0 -1 0 0 0 0 0 0 0 0 -1 0 0 0 13.75 3.9 6.25 0.03125 7.5 0.125 2 21.875 0.1875 7.25 4.2 2.5 2.4 1.75 35 0.03125 9.375 0.04375 0.0375 0.08125 0.08125 0 0 0 0 0 0 0 -1 0 0 0 0 0 -1 0 0 x** = 0 0 0 0 0 0 0 -1 0 0 1 0 0 1 0 -1 0 0 1 0 0 1 0 0 253.969 384.742 91.573 49.968 780.252 129.615 199.211 341.365 29.985 700.176 417.082 264.523 233.555 181.683 490.328 50.010 121.338 69.940 60.023 129.962 129.962 0 0 -1 0 0 0 -1 0 0 0 0 0 0 0 1 0 Incomplete, inconsistent Social Accounting Matrix 1a 1a Production Activities Manuf 0 1b Non-manuf 130 2a Factors of Production Labour 420 2b Capital 240 3a Instititutions Low-income HH 0 3b High-inc HH 0 3c Government 0 TOTAL . 1b 220 0 250 175 0 0 0 . 2a 0 0 0 0 560 140 70 . 2b 0 0 0 0 . . 60 . 3a 390 200 0 0 0 0 0 . 3b 100 350 0 0 0 0 0 . 3c 50 30 0 0 50 0 0 130 TOTAL 750 725 . . . . 130 Solving for inconsistencies 1a 1a Production Activities 1b 2a Factors of Production 2b 3a Instititutions 3b 3c TOTAL Manuf Non-manuf Labour Capital Low-income HH High-inc HH Government 1b 2a 2b 3a 3b 3c 0 253.969 0 0 384.742 91.573 49.968 780.252 129.615 0 0 0 199.211 341.365 29.985 700.176 417.082 264.523 0 0 0 0 0 . 233.555 181.683 0 0 0 0 0 . 0 0 490.328 . 0 0 50.010 . 0 0 121.338 . 0 0 0 . 0 0 69.940 60.0229 0 0 0 129.962 . . . . . . 129.962 Solving for incompleteness 1a 1a Production Activities 1b 2a Factors of Production 2b 3a Instititutions 3b 3c TOTAL Manuf Non-manuf Labour Capital Low-income HH High-inc HH Government 0 129.615 417.082 233.555 0 0 0 780.252 1b 2a 2b 3a 3b 3c 253.969 0 0 384.742 91.573 49.968 0 0 0 199.211 341.365 29.985 264.523 0 0 0 0 0 181.683 0 0 0 0 0 0 490.328 43.614 0 0 50.010 0 121.338 311.601 0 0 0 0 69.940 60.0229 0 0 0 700.176 681.606 415.238 583.952 432.939 129.962 780.252 700.176 681.606 415.238 583.952 432.939 129.962 Initial (diagonal) variance matrix (V) 1 2 3 4 5 6 1 13.75 0 0 0 0 0 2 0 3.9 0 0 0 0 3 0 0 6.25 0 0 0 4 0 0 0 0.0313 0 0 5 0 0 0 0 7.5 0 6 0 0 0 0 0 0.125 7 0 0 0 0 0 0 8 0 0 0 0 0 0 9 0 0 0 0 0 0 10 0 0 0 0 0 0 11 0 0 0 0 0 0 12 0 0 0 0 0 0 13 0 0 0 0 0 0 14 0 0 0 0 0 0 15 0 0 0 0 0 0 16 0 0 0 0 0 0 17 0 0 0 0 0 0 18 0 0 0 0 0 0 19 0 0 0 0 0 0 20 0 0 0 0 0 0 21 0 0 0 0 0 0 Adjusted variance matrix (V**) 1 2 3 4 5 1 4.044 -1.142 -1.830 -0.010 1.062 2 -1.142 3.106 -1.272 -0.005 0.687 3 -1.830 -1.272 4.211 -0.008 1.100 4 -0.010 -0.005 -0.008 0.028 0.004 5 1.062 0.687 1.100 0.004 2.853 6 0.031 0.010 0.017 0.000 0.058 7 0.190 -0.057 -0.091 0.001 0.042 8 2.075 -0.624 -0.999 0.012 0.464 9 0.012 0.003 0.004 -0.021 -0.002 10 2.307 -0.667 -1.069 -0.008 0.563 11 0.668 0.407 0.652 0.003 1.730 12 -1.013 0.264 0.422 0.001 -0.326 13 0.363 0.269 0.431 0.002 1.065 14 -0.723 0.211 0.338 0.001 -0.173 15 -0.273 0.529 0.848 0.002 1.106 16 -0.001 0.001 0.002 -0.004 -0.001 17 -0.073 0.142 0.227 0.000 0.296 18 0.000 0.000 0.000 0.002 0.001 19 0.000 -0.001 -0.001 0.001 0.000 20 0.001 -0.001 -0.002 0.003 0.001 21 0.001 -0.001 -0.002 0.003 0.001 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 21.875 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1875 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7.25 0 0 4.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.75 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0313 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9.375 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0438 0 0 0 0.0375 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0813 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 11 14 15 16 17 18 19 20 21 0.031 0.190 2.075 0.012 2.307 0.668 -1.013 0.363 -0.723 -0.273 -0.001 -0.073 0.000 0.000 0.001 0.001 0.010 -0.057 -0.624 0.003 -0.667 0.407 0.264 0.269 0.211 0.529 0.001 0.142 0.000 -0.001 -0.001 -0.001 0.017 -0.091 -0.999 0.000 0.001 0.012 0.004 -0.021 -1.069 -0.008 0.652 0.003 0.422 0.001 0.431 0.002 0.338 0.001 0.848 0.002 0.002 -0.004 0.227 0.000 0.000 0.002 -0.001 0.001 -0.002 0.003 -0.002 0.003 0.058 0.042 0.464 0.123 -0.008 -0.084 -0.002 0.000 0.563 0.031 1.730 -0.040 -0.326 0.001 1.065 -0.025 -0.173 -0.001 1.106 -0.031 -0.001 0.000 0.296 -0.008 0.001 0.000 0.000 0.000 0.001 0.000 0.001 0.000 -0.008 1.859 -1.542 -0.004 0.305 0.029 0.066 0.021 0.050 0.075 0.002 0.020 -0.001 -0.001 -0.001 -0.001 -0.043 0.060 3.337 0.013 0.313 -0.001 0.718 0.001 0.235 -0.001 0.544 0.000 0.819 -0.008 0.017 -0.021 0.219 -0.002 -0.007 0.010 -0.007 0.008 -0.014 0.018 -0.014 0.018 6 7 8 -0.084 0.000 -1.542 -0.004 5.007 -0.043 9 12 13 0 0.0813 0.031 0.305 3.337 0.013 3.687 0.301 0.786 0.231 0.593 0.856 -0.003 0.229 0.002 0.001 0.003 0.003 -0.040 0.001 0.029 0.066 0.313 0.718 -0.001 0.001 0.301 0.786 2.575 -0.269 -0.269 2.047 -0.804 -0.058 -0.098 -0.247 1.817 1.401 -0.001 -0.001 0.487 0.375 0.002 0.002 0.000 0.000 0.001 0.001 0.001 0.001 -0.025 0.021 0.235 -0.001 0.231 -0.804 -0.058 1.894 -0.074 -0.680 -0.001 -0.182 0.000 0.000 0.000 0.000 -0.001 -0.031 0.050 0.075 0.544 0.819 0.000 -0.008 0.593 0.856 -0.098 1.817 -0.247 1.401 -0.074 -0.680 1.563 -0.272 -0.272 9.947 -0.001 -0.002 -0.073 -6.711 0.000 -0.019 0.000 0.011 0.001 -0.008 0.001 -0.008 0.000 0.002 0.017 -0.021 -0.003 -0.001 -0.001 -0.001 -0.001 -0.002 0.028 -0.001 0.002 0.001 0.003 0.003 -0.008 0.000 0.020 -0.001 0.219 -0.007 -0.002 0.010 0.229 0.002 0.487 0.002 0.375 0.002 -0.182 0.000 -0.073 0.000 -6.711 -0.019 -0.001 0.002 7.578 -0.005 -0.005 0.027 0.003 -0.014 -0.002 0.013 -0.002 0.013 0.000 0.000 -0.001 -0.001 -0.007 -0.014 0.008 0.018 0.001 0.003 0.000 0.001 0.000 0.001 0.000 0.000 0.000 0.001 0.011 -0.008 0.001 0.003 0.003 -0.002 -0.014 0.013 0.025 0.011 0.011 0.024 0.011 0.024 0.000 -0.001 -0.014 0.018 0.003 0.001 0.001 0.000 0.001 -0.008 0.003 -0.002 0.013 0.011 0.024 0.024 EC 936 ECONOMIC POLICY MODELLING LECTURE 2: PART III INPUT-OUTPUT TECHNIQUES & CONSISTENCY MODELLING z11 + z12 + z13 + ..... + z1n + f1 = x1 z21 + . . . zm1 + z22 + z23 + ..... + z2n + f2 = zm2 + zm3 + ..... + zmn + fm = x2 . . . xm z11 + z12 + z13 + ..... + z1n + f1 = x1 z21 + . . . zn1 + z22 + z23 + ..... + z2n + f2 = zn2 + zn3 + ..... + znn + fn = x2 . . . xn since m = n a11 x1 + a12 x2 + a13 x3 + . . . . . + a1n xn + f1 = x1 a21 x1 + a22 x2 + a23 x3 + . . . . . + . . . an1 x1 + an2 x2 + an3 x3 + . . . . . + a2n xn + f2 = ann xn + fn = x2 . . . xn x1 - a11 x1 - a12 x2 - a13 x3 - ..... - a1n xn = f1 x2 . . . x3 - a21 x1 - a22 x2 - a23 x3 - ..... - = f2 an1 x1 - an2 x2 - an3 x3 - ..... - a2n xn . . . ann xn = fn (1 - a11) x1 a21 x1 . . . an1 x1 a12 x2 - a13 x3 - ..... - a1n xn = f1 - (1 - a22) x2 - a23 x3 - ..... - a2n xn = - an3 x3 - ..... - f2 . . . fn an2 x2 - (1 - ann) xn = x= Z= xi . . . . xn f= z11 z21 . . . z n1 z12 z22 z13 z23 z n2 z n3 fi . . . . fn . . . . . z1n . . . . . z2n . . . . . . . . znn A = I = a11 a21 . . . an1 a12 a22 a13 a23 an2 a n3 1 0 . . . 0 0 1 . 0 0 . 0 0 [I–A]x = f x = [ I – A ] -1 f . . . . . a1n . . . . . a2n . . . . . . . . ann ..... 0 ..... 0 . . . ..... 1 2 3 ∞ 4 ∆Y = X + cX + c X + c X +c X + . . . . +c X = 1 ______ (1 – c) 2 3 4 ∞ x = f + Af + A f + A f + A f + . . . . + A f = (I + A + A2 + A3 + A4 + . . . . + A∞) f ≈ [ I – A ] -1 f L matrix for U.S. 2006 3 0.02380 0.05656 1.00585 0.46496 0.18254 0.32938 0.03230 4 0.07353 0.14697 0.00814 1.59722 0.20128 0.38284 0.05247 5 0.00745 0.05240 0.00791 0.14236 1.10757 0.33446 0.03590 6 0.01006 0.01613 0.01199 0.14369 0.07183 1.46603 0.03424 7 0.01176 0.03049 0.02863 0.21724 0.09100 0.36981 1.03824 L (8 iterations) 2 3 0.00995 0.02360 1.17140 0.05622 0.00355 1.00580 0.20551 0.46356 0.08192 0.18197 0.27876 0.32756 0.02383 0.03212 4 0.07326 0.14650 0.00808 1.59531 0.20051 0.38037 0.05223 5 0.00735 0.05223 0.00789 0.14165 1.10729 0.33353 0.03581 6 0.00995 0.01595 0.01196 0.14293 0.07152 1.46504 0.03414 7 0.01164 0.03027 0.02860 0.21635 0.09064 0.36866 1.03812 Percent error of power-series approximation 1 2 3 1 Agriculture 0.0206 1.2221 0.8447 2 Mining 0.9686 0.0180 0.6076 3 Construction 0.6806 0.7979 0.0046 4 Manufacturing 0.4455 0.4179 0.3020 5 Trade, Transport 0.4429 0.4215 0.3092 6 Services 0.8090 0.4004 0.5530 7 Other 0.7058 0.4638 0.5592 5.0729 5.7417 6.1804 4 0.3718 0.3175 0.7736 0.1194 0.3807 0.6455 0.4671 7.0756 5 6 1.3542 1.0813 0.3304 1.1575 0.2970 0.2116 0.4975 0.5318 0.0257 0.4278 0.2755 0.0678 0.2542 0.2877 8.0346 9.7655 mean error 7 1.0773 0.7120 0.1027 0.4086 0.3921 0.3119 0.0110 10.0155 1.0589 1 2 3 4 5 6 7 Agriculture Mining Construction Manufacturing Trade, Transport Services Other 1 1.33652 0.04813 0.00921 0.42750 0.17271 0.30407 0.03461 Power-series approximation to 1 1 Agriculture 1.33624 2 Mining 0.04766 3 Construction 0.00915 4 Manufacturing 0.42560 5 Trade, Transport 0.17194 6 Services 0.30161 7 Other 0.03437 2 0.01007 1.17161 0.00358 0.20637 0.08226 0.27988 0.02394 Leontief inverse matrix, U.S. 2006 1 1 Agriculture 1.3436 2 Mining 0.0464 3 Construction 0.0087 4 Manufacturing 0.4298 5 Trade, Transport 0.1792 6 Services 0.3150 7 Other 0.0132 2 0.0103 1.1719 0.0034 0.2061 0.0848 0.2900 0.0113 3 0.0243 0.0546 1.0055 0.4664 0.1890 0.3416 0.0147 4 0.0751 0.1451 0.0077 1.5994 0.2083 0.3968 0.0313 5 0.0075 0.0520 0.0076 0.1412 1.1110 0.3467 0.0212 6 0.0102 0.0153 0.0117 0.1419 0.0740 1.4835 0.0168 7 0.0119 0.0295 0.0283 0.2165 0.0940 0.3835 1.0230 L using RAS results derived from 2002 technical coefficient matrix 1 2 3 4 5 1 Agriculture 1.3422 0.0111 0.0257 0.0789 0.0072 2 Mining 0.0407 1.0899 0.0592 0.1274 0.0608 3 Construction 0.0099 0.0279 1.0068 0.0115 0.0097 4 Manufacturing 0.3518 0.1743 0.4486 1.6266 0.1277 5 Trade, Transport 0.1821 0.0991 0.1826 0.2030 1.1222 6 Services 0.3602 0.3525 0.3539 0.4092 0.3261 7 Other 0.0113 0.0119 0.0118 0.0225 0.0268 6 0.0087 0.0147 0.0126 0.1422 0.0708 1.4859 0.0183 7 0.0122 0.0291 0.0224 0.2172 0.0997 0.3829 1.0222 Absolute error in Leontief coefficients 1 2 1 Agriculture 0.0014 0.0008 2 Mining 0.0057 0.0820 3 Construction 0.0012 0.0245 4 Manufacturing 0.0780 0.0318 5 Trade, Transport 0.0028 0.0144 6 Services 0.0453 0.0625 7 Other 0.0019 0.0007 3 0.0014 0.0047 0.0013 0.0177 0.0064 0.0123 0.0029 4 0.0039 0.0177 0.0038 0.0272 0.0052 0.0123 0.0088 5 0.0003 0.0087 0.0020 0.0135 0.0112 0.0207 0.0056 6 0.0014 0.0005 0.0009 0.0003 0.0032 0.0025 0.0015 7 0.0003 0.0003 0.0060 0.0007 0.0057 0.0006 0.0008 Percentage absolute errors in Leontief coefficients 1 2 3 1 Agriculture 0.0010 0.0779 0.0579 2 Mining 0.1227 0.0699 0.0855 3 Construction 0.1332 7.3057 0.0013 4 Manufacturing 0.1816 0.1544 0.0380 5 Trade, Transport 0.0158 0.1695 0.0337 6 Services 0.1437 0.2156 0.0360 7 Other 0.1468 0.0609 0.1991 4 0.0519 0.1218 0.4943 0.0170 0.0251 0.0310 0.2820 5 0.0392 0.1681 0.2685 0.0957 0.0101 0.0596 0.2625 6 0.1384 0.0356 0.0765 0.0022 0.0435 0.0017 0.0925 7 0.0259 0.0112 0.2111 0.0030 0.0609 0.0016 0.0008 Absolute error in technical coefficients 1 2 1 Agriculture 0.0191 0.0036 2 Mining 0.0048 0.1282 3 Construction 0.0005 0.0543 4 Manufacturing 0.0574 0.0226 5 Trade, Transport 0.0066 0.0155 6 Services 0.0410 0.0785 7 Other 0.0006 0.0012 3 0.0026 0.0193 0.0014 0.0189 0.0128 0.0114 0.0031 4 0.0061 0.0281 0.0004 0.0101 0.0121 0.0130 0.0074 5 0.0007 0.0204 0.0016 0.0086 0.0240 0.0535 0.0153 6 0.0029 0.0010 0.0004 0.0095 0.0049 0.0137 0.0022 7 0.0003 0.0058 0.0113 0.0023 0.0094 0.0188 0.0060 Absolute error in Leontief coefficients 1 2 1 Agriculture 0.0014 0.0008 2 Mining 0.0057 0.0820 3 Construction 0.0012 0.0245 4 Manufacturing 0.0780 0.0318 5 Trade, Transport 0.0028 0.0144 6 Services 0.0453 0.0625 7 Other 0.0019 0.0007 3 0.0014 0.0047 0.0013 0.0177 0.0064 0.0123 0.0029 4 0.0039 0.0177 0.0038 0.0272 0.0052 0.0123 0.0088 5 0.0003 0.0087 0.0020 0.0135 0.0112 0.0207 0.0056 6 0.0014 0.0005 0.0009 0.0003 0.0032 0.0025 0.0015 7 0.0003 0.0003 0.0060 0.0007 0.0057 0.0006 0.0008 Percentage absolute errors in technical coefficients 1 2 3 1 Agriculture 0.2623 640.2814 1.8850 2 Mining 2.3241 0.1177 2.3954 3 Construction 0.1070 204.7931 0.3873 4 Manufacturing 0.0315 0.3883 0.3272 5 Trade, Transport 0.1502 0.7700 0.4707 6 Services 0.5113 0.8906 0.3227 7 Other 0.2568 0.4101 0.7167 4 0.2056 0.8940 0.5080 0.3735 0.2391 0.2594 0.1711 5 4.3610 0.6867 0.5959 0.3008 0.5520 0.2427 0.9605 6 0.4329 4.7054 0.3268 0.2151 0.2244 0.3250 0.4240 7 0.0599 0.7717 0.0331 0.2307 0.1366 0.2656 0.0398 Percentage absolute errors in Leontief coefficients 1 2 3 1 Agriculture 0.0010 0.0779 0.0579 2 Mining 0.1227 0.0699 0.0855 3 Construction 0.1332 7.3057 0.0013 4 Manufacturing 0.1816 0.1544 0.0380 5 Trade, Transport 0.0158 0.1695 0.0337 6 Services 0.1437 0.2156 0.0360 7 Other 0.1468 0.0609 0.1991 4 0.0519 0.1218 0.4943 0.0170 0.0251 0.0310 0.2820 5 0.0392 0.1681 0.2685 0.0957 0.0101 0.0596 0.2625 6 0.1384 0.0356 0.0765 0.0022 0.0435 0.0017 0.0925 7 0.0259 0.0112 0.2111 0.0030 0.0609 0.0016 0.0008
© Copyright 2025 Paperzz