DOC/LP/00/21.01.05 LP – AP7101 LESSON PLAN LP Rev. No: 01 Sub Code/Name: AP7101 – Advanced Digital Signal Processing Date: 14.08.2014 Unit : V Page 01 of 06 Branch : ME(CS & AE) UNIT V MULTIRATE DIGITAL SIGNAL PROCESSING Semester: I 9 Mathematical description of change of sampling rate - Interpolation and Decimation Continuous time model - Direct digital domain approach - Decimation by integer factor Interpolation by an integer factor - Single and multistage realization - Poly phase realization - Applications to sub band coding - Wavelet transform and filter bank implementation of wavelet expansion of signals. Objective: To understand Multirate systems and their applications. Session No. Topics to be covered Time Ref 3,6 1. Mathematical description of change of sampling rate 50m 2. Interpolation and Decimation, Continuous time model Direct digital domain approach 50m 3. Decimation by an integer factor 50m 4. Interpolation by an integer factor 50m 5. Sampling rate conversion by a rational factor (I/D) 50m 6. Tutorial 50m 7. Identities of sampling rate converters 50m 8. Multistage implementation of multirate system 50m 9. Polyphase filter structures 50m 10. Applications -sub band coding, Quadrature Mirror filter 50m 11. Tutorial 50m 12. Wavelet transform and filter bank implementation of wavelet expansion of signals 50m 3,6 3,6 3,6 3,6 3,6 3,6 3,6 3,6 3,6 3,6 Teaching Method BB BB OHP OHP BB BB BB BB BB BB BB 3,6 BB,IPT DOC/LP/00/21.01.05 LP – AP7101 LESSON PLAN LP Rev. No: 01 UNIT I Sub Code/Name: AP7101 – Advanced Digital Signal Processing Date: 14.08.2014 Unit :I Page 02 of 06 Branch : ME(CS & AE) Semester: I DISCRETE RANDOM SIGNAL PROCESSING 9 Weiner Khitchine relation - Power spectral density – filtering random process, Spectral Factorization Theorem, special types of random process – Signal modeling-Least Squares method, Pade approximation, Prony’s method, iterative Prefiltering, Finite Data records, Stochastic Models. Objective: To compare different types of random processes. Session No. 13. 14. 15. 16. Topics to be covered Introduction to Discrete Random signals, Discrete random variables Autocorrelation,Power spectral density and its properties Filtering Random Process Weiner Khintchine relation Time Ref Teaching Method 50m 1 BB 50m 1 BB 50m 1 BB 50m 1 BB 17. Spectral Factorization 50m 1 BB 18. Special types of Random process – ARMA, AR, MA process using Yule-Walker method 50m 2 BB 19. Tutorial 50m 2 BB 20. Signal modeling-Least Squares method 50m 1 BB CAT I 75m 21. Pade approximation 50m 1 BB 22. Prony’s method 50m 1 OHP 23. Iterative Prefiltering 50m 1 OHP 50m 1 BB 24. Finite Data records and Stochastic Models DOC/LP/00/21.01.05 LP – AP7101 LESSON PLAN LP Rev. No: 01 Sub Code/Name: AP7101 – Advanced Digital Signal Processing Date: 14.08.2014 Unit : II Page 03 of 06 Branch : ME(CS & AE) Semester: I UNIT II SPECTRUM ESTIMATION 9 Non-Parametric methods - Correlation method - Co-variance estimator - Performance analysis of estimators – Unbiased consistent estimators - Periodogram estimator Barlett spectrum estimation - Welch estimation - Model based approach - AR, MA, ARMA Signal modeling - Parameter estimation using Yule-Walker method. Objective: To compare nonparametric and parametric methods of spectrum estimation. Session No. Topics to be covered Time Ref Teaching Method 25. Non-Parametric methods 50m 1,2 BB 26. Periodogram estimation 50m 1,2 BB 27. Performance analysis of estimators-Bias,Consistency and Resolution 50m 1,2 BB 28. Unbiased consistent estimators 50m 1,2 BB 29. Barlett spectrum estimation 50m 1,2 BB 30. Welch estimation 50m 1,2 BB 31. Parametric method of spectral estimation-Model based approach - Parameter estimation using Yule-Walker method 50m 1,2 BB 32. AR Signal modeling 50m 1,2 BB 33. MA Signal modeling method 50m 1,2 BB 34. ARMA Signal modeling 50m 1,2 BB 35. Tutorial 50m 1,2 BB 50m 1,2 BB 36. Correlation,Co-variance estimator DOC/LP/00/21.01.05 LP – AP7101 LESSON PLAN LP Rev. No: 01 Sub Code/Name: AP7101 – Advanced Digital Signal Processing Date: 14.08.2014 Unit : III Page 04 of 06 UNIT-III Branch : ME(CS & AE) Semester: I LINEAR ESTIMATION AND PREDICTION 9 Maximum likelihood criterion - Efficiency of estimator - Least mean squared error criterion - Wiener filter - Discrete Wiener Hoff equations - Recursive estimators Kalman filter - Linear prediction, Prediction error - Whitening filter, Inverse filter Levinson recursion, Lattice realization, Levinson recursion algorithm for solving Toeplitz system of equations. Objective: To understand different types of prediction and filtering methods. Session No. Topics to be covered Time Ref Teaching Method 37. Maximum likelihood criterion 50m 1 BB 38. Efficiency of estimator 50m 1 BB 39. FIR Wiener filters-Least mean squared error criterion using Discrete Wiener Hoff equations 50m 1 BB 40. Applications-Filtering, Linear Prediction, Noise cancellation,Lattice realization 50m 1 BB 41. -do- 50m 1 BB 42. Tutorial 50m 1 BB CAT-II 75m 43. IIR Wiener filters-Causal & Non causal types,Causal Linear prediction,Prediction error 50m 1 BB,IPT 44. Weiner deconvolution -Whitening filter, Inverse filter 50m 1 BB,IPT 45. Kalman filter 50m 1 BB 46. Recursive estimators 50m 1 BB 47. Levinson recursion 50m 1 BB 48. Levinson recursion algorithm for solving Toeplitz system of equations. 50m 1 BB 49. Tutorial 50m 1 BB DOC/LP/00/21.01.05 LP – AP7101 LESSON PLAN LP Rev. No: 01 Sub Code/Name: AP7101 – Advanced Digital Signal Processing Date: 14.08.2014 Unit : IV Page 05 of 06 Branch : ME(CS & AE) UNIT IV ADAPTIVE FILTERS Semester: I 9 FIR Adaptive filters - Newton's steepest descent method - Adaptive filters based on steepest descent method - Widrow Hoff LMS Adaptive algorithm - Adaptive channel equalization - Adaptive echo canceller - Adaptive noise cancellation - RLS Adaptive filters - Exponentially weighted RLS - Sliding window RLS - Simplified IIR LMS Adaptive filter. Objective: To study and compare different adaptive filter algorithms. Session No. Topics to be covered Time Ref Teaching Method 50. FIR Adaptive filters 50m 1,4 BB 51. Newton's steepest descent method 50m 1,4 BB 52. Adaptive filters based on steepest descent method 50m 1,4 BB 53. Widrow Hoff LMS Adaptive algorithm 50m 1,4 BB 54. Tutorial 50m 1,4 BB 55. Adaptive channel equalization 50m 1,4 BB 56. Adaptive echo cancellation 50m 1,4 BB 57. Adaptive noise cancellation 50m 1,4 BB 58. RLS adaptive algorithm 50m 1,4 BB 50m 1,4 BB Simplified IIR LMS Adaptive filter 50m 1,4 BB CAT-III 75m 59. 60. Exponentially weighted RLS, Sliding window RLS DOC/LP/00/21.01.05 LP – AP7101 LESSON PLAN LP Rev. No: 01 Sub Code/Name: AP7101 – Advanced Digital Signal Processing Date: 14.08.2014 Branch : ME(CS & AE) Page 06 of 06 Semester: I Course Delivery Plan: Week 1 2 3 4 5 6 7 8 9 10 11 12 I II I II I II I II I II I II I II I II I II I II I II I II Units V II I CAT I 13 I II 14 I 15 II I IV III CAT II CAT III REFERENCES: 1. Monson H. Hayes, “Statistical Digital Signal Processing and Modeling”, John Wiley and Sons Inc., New York, 2006. 2. Sophoncles J. Orfanidis, “Optimum Signal Processing “, McGraw-Hill, 2000. 3. John G. Proakis, Dimitris G. Manolakis, “Digital Signal Processing”, Prentice Hall of India, New Delhi, 2005. 4. Simon Haykin, “Adaptive Filter Theory”, Prentice Hall, Englehood Cliffs, NJ1986. 5. S. Kay,” Modern Spectrum Estimation Theory And Application”, Prentice Hall, Englehood Cliffs, Nj1988. 6. P. P. Vaidyanathan, “Multirate Systems And Filter Banks”, Prentice Hall, 1992. 7. http://nptel.ac.in Prepared by Approved by B.SARALA,L.ANJU Dr.S.GANESH VAIDYANATHAN Assistant Professor /EC HoD- EC 14.08.2014 14.08.2014 Signature Name Designation Date II
© Copyright 2026 Paperzz