In both beamVIII.3-1 theory, only stress resultants Timoshenko Beams 3D problems (1) 1D problems !! (sum over cross section area) are considered. Timoshenko beam theory x3 q x3 x1 Elementary beam theory (Euler-Bernoulli beam theory) x2 4. A plane normal to the beam axis in the undeformed state remains symmetric axis normal in the deformed state. Assume: r b 0 t1 t2 0, t3 x1, x2 , x3 t3 x1, x2 , x3 1. A plane normal to the beam axis in the undeformed state remains plane in the deformed state. 2. All the points on a normal cross-sectional plane have the same transverse displacement. no thickness stretch 3. There is no stretch along the beam axis. u1 x3 x1 u1 x3 w' x1 neglect shear u ?? deformation!! 2 u3 wx1 u3 wx1 8- 0 Institute of Applied Mechanics u1 x3 x1 t1 t2 0, t3 x1, x2 , x3 t3 x1, x2 , x3 t2 12n1 22n2 32n3 u3 wx1 E ij 1 ij kk ij u2 ?? prismatic beam: n = 0: = VIII.3-2 Timoshenko Beams (2) x3 x3 q x1 strain field: 11 x3 ,1 13 12 w,1 x2 symmetric axis 33 0 other ij ?? stress field: 11 E11 22 33 Ex3 ,1 22 33 13 2 13 w,1 8- 1 1 equations of equilibrium: 11,1 21,2 31,3 0 12,1 22, 2 32,3 0 dA A 13,1 23, 2 33,3 0 0 12,1 22, 2 32,3 dA A d 12dA 22n2 32n3 ds C d x1 A B.C. d Ok!! d A t d s 12 2 C d x1 A geometry, loading: symmetric w.r.t. x3-axis 12 odd function of x2 dA 0of Applied Mechanics Institute A 12 11,1 21,2 31,3 0 12,1 22, 2 32,3 0 VIII.3-3 13,1 23, 2 33,3 0 t1 t2 0, t3 x1, x2 , x3 t3 x1, x2 , x3 t3 13n(3) 1 23n2 33n3 Timoshenko Beams t1 11n1 21n2 31n3 0 13,1 23, 2 33,3 dA A d 13dA 23n2 33n3 ds C d x1 A d 13dA t3 ds A C d x1 dM x3 21n2 31n3 ds 31dA d x1 C A dM dM x3t1 ds Q Q d x1 C d x1 px1 t3 ds d M Q 0 C d x 1 dQ prismatic beam: n1 = 0: = p x1 0 d x1 0 11,1 21,2 31,3 x3 dA dQ p x1 dx1 A d 11x3dA 21x3 , 2 31x3 ,3 31 dA A d x1 A 8- 2 Q 13dA Summary: A 2 w,1 dA A M x3 11dA A x3 Ex3 ,1 22 33 dA A EI,1 22 33 x3dA A Institute of Applied Mechanics Q 2 w,1 dA d M d x Q 0 1 dQ p x1 0 d x1 A x dA (4) EI Beams VIII.3-4MTimoshenko ,1 A 22 33 3 Approximations: 1. Neglect 22 33 x3dA A 2. Replace by 2 : shear factor, a correction factor is used to adjust the approximate theory to agree with the 3D theory. When = 0.3, = 0.850 for rectangular cross-section and 0.886 for circular cross-section. dw d d EI 2 A 0 dx1 dx1 dx1 8- 3 d 2 dw p 0 A dx1 dx1 Timoshenko beam equation Institute of Applied Mechanics d M d x Q 0 1 dQ p x1 0 d x1 Q 2 w,1 dA dw d d 2 EI A 0 dx1 dx1 dx1 d 2 dw p 0 A dx1 dx1 A M EI ,1 VIII.3-5 Remarks 1. Euler-Bernoulli beam theory neglects shear deformation 2 dw dx1 M EI 2 dw dx12 d d2w EI 2 Q dx1 dx1 d2 d2w EI 2 px1 2 dx1 dx1 2. The Timoshenko beam theory accounts for flexural as well as shear deformation. While the Euler-Bernoulli beam theory accounts only for flexural deformation. 3. Two B.C.s are required at both ends 8- 4 either w or Q either dw/dx1 or M Institute of Applied Mechanics d M d x Q 0 1 dQ p x1 0 d x1 Q 2 w,1 dA A M EI ,1 VIII.3-6 Example (1) px t ds 1 q x3 x1 L cross-sectional area A moment of inertia I correction factor 2 B.C.s: dw d d 2 EI A 0 dx1 dx1 dx1 d 2 dw p 0 A dx1 dx1 w(0) w( L) 0 M (0) M ( L) 0 C 3 d 2 dw p 0 A dx1 d x1 EI 2 Aw ' EI p 0 p x1 c1 EI by M (0) 0 p 2 x1 c1 x1 c2 2 EI p 3 c1 2 x1 x1 c2 x1 c3 6 EI 2 dw d d pL w( x ) ?? 2 EI A 0 from M ( L) 0 c1 1 dx1 d x1 d x 2 EI 1 8- 5 Institute of Applied Mechanics p pL x1 B.C.s: EI 2 EI w(0) w( L) 0 p 3 pL 2 x1 x1 c3 6 EI 4 EI dw d d EI 2 A 0 dx1 d x1 d x1 VIII.3-7 Example (2) pL p 3 pL 2 p 2 EI x1 A w x x c 1 1 3 0 2 EI 6 EI 4 EI EI p 3 pL 2 2 px1 pL w 2 x1 x1 c3 2 A 4 EI 6EI 1 by w(0) 0 pL 3 p 4 w 2 px pLx1 x1 x1 c3 x1 c4 2 A 12 EI 24 EI 1 from w( L) 0 2 1 pL3 c3 24 EI p 4 pL 3 pL3 p 2 pL w 2 x1 x1 x1 x1 x1 A 2 2 24 EI 12 EI 24 EI 1 8- 6 Institute of Applied Mechanics p 3 pL 2 pL3 x1 x1 6 EI 4 EI 24 EI p 4 pL 3 pL3 p 2 pL w 2 x1 x1 x1 x1 x1 A 2 2 24 EI 12 EI 24 EI 1 VIII.3-8 Example (3) p 2 pL px1 x1 L M x1 x1 2 2 2 Q 8- 7 dM d px1 x L 1 d x1 d x1 2 L p x1 2 M EI ,1 Q 2 w,1 dA A d M d x Q 0 1 dQ p x1 0 d x1 Institute of Applied Mechanics
© Copyright 2026 Paperzz