Chapter 2 Review

Chapter 2 Exam Overview
2.1a Solve limits graphically
1. Evaluate the following expressions using the graph of the function of f(x).
a. lim 𝑓(π‘₯)
e. 𝑓(π‘Ž)
j. lim+ 𝑓(π‘₯)
n.
π‘₯β†’βˆ’βˆž
π‘₯β†’0
f. lim+ 𝑓(π‘₯)
b. lim 𝑓(π‘₯)
k. lim 𝑓(π‘₯)
o.
c.
π‘₯β†’π‘Ž +
lim 𝑓(π‘₯)
π‘₯β†’π‘Ž βˆ’
d. lim 𝑓(π‘₯)
π‘₯β†’π‘Ž
g.
π‘₯→𝑏
lim 𝑓(π‘₯)
π‘₯β†’π‘βˆ’
l.
π‘₯→𝑏
m. 𝑓(0)
h. lim 𝑓(π‘₯)
i.
π‘₯β†’0βˆ’
lim 𝑓(π‘₯)
π‘₯β†’0
lim 𝑓(π‘₯)
π‘₯→𝑐 +
lim 𝑓(π‘₯)
π‘₯→𝑐 βˆ’
p. lim 𝑓(π‘₯)
π‘₯→𝑐
q. 𝑓(𝑐)
𝑓(𝑏)
2. Evaluate the following expressions using the graph of the function of f(x).
m. limβˆ’ 𝑓(π‘₯)
a. lim + 𝑓(π‘₯)
e. lim+ 𝑓(π‘₯)
i. lim+ 𝑓(π‘₯)
b.
c.
π‘₯β†’βˆ’1
π‘₯β†’0
f.
lim 𝑓(π‘₯)
g. lim 𝑓(π‘₯)
k. lim 𝑓(π‘₯)
h. 𝑓(0)
l.
π‘₯β†’βˆ’1
π‘₯β†’βˆ’1
d. 𝑓(βˆ’1)
limβˆ’ 𝑓(π‘₯)
π‘₯β†’0
π‘₯β†’0
j.
π‘₯β†’1
lim βˆ’ 𝑓(π‘₯)
limβˆ’ 𝑓(π‘₯)
π‘₯β†’1
π‘₯β†’1
𝑓(1)
π‘₯β†’3
n. lim 𝑓(π‘₯)
π‘₯β†’3
o. 𝑓(3)
p. lim 𝑓(π‘₯)
π‘₯β†’βˆ’βˆž
3. Identify where everywhere the limit does not exist (DNE) and everywhere the limit
exist in the following function.
4. Use the graph of f(x) below to evaluate the expressions.
a. lim 𝑓(π‘₯)
c. lim 𝑓(π‘₯)
π‘₯β†’βˆ’βˆž
b. lim 𝑓(π‘₯)
π‘₯β†’βˆž
π‘₯β†’2
d. lim 𝑓(π‘₯)
π‘₯β†’0
5. Use the graph of g(x) below to evaluate the expressions in 7-13.
a. lim 𝑔(π‘₯)
c. lim 𝑔(π‘₯)
π‘₯β†’βˆ’βˆž
b. lim 𝑔(π‘₯)
π‘₯β†’βˆž
e. 𝑓(0)
f. 𝑓(2)
π‘₯β†’2
d. lim 𝑔(π‘₯)
π‘₯β†’0
6. Sketch a function β„Ž(π‘₯) such that β„Ž(2) = 4 but lim β„Ž(π‘₯) = 𝐷𝑁𝐸.
π‘₯β†’2
7. Sketch a function π‘Ÿ(π‘₯) such that π‘Ÿ(2) = 4 but lim π‘Ÿ(π‘₯) = βˆ’2.
π‘₯β†’2
e. lim 𝑔(π‘₯)
π‘₯β†’4
f. 𝑔(0)
g. 𝑔(2)
2.1b Solve limits numerically
For each of the following limits, determine if you can solve them by substitution (plug-in).
Then construct a table that will allow you to see what the limit approaches as x approaches
the given value.
π‘₯βˆ’2
1. lim π‘₯ 2 βˆ’π‘₯βˆ’2
π‘₯β†’2
2
π‘₯βˆ’2
2. lim π‘₯ 2 βˆ’4
π‘₯β†’2
π‘₯ 3 βˆ’125
π‘₯β†’5 π‘₯βˆ’5
3. lim
5
1
4. lim
1
π‘₯β†’0 𝑒 βˆ’π‘₯ +1
𝑒 2π‘₯ βˆ’1
π‘₯β†’0 2π‘₯
5. lim
0
sin 2π‘₯
6. lim sin 5π‘₯
π‘₯β†’0
π‘₯2
π‘₯β†’0 1βˆ’cos π‘₯
7. lim
1 𝑛
𝑛
8. lim (1 + )
π‘›β†’βˆž
1
100
1000
10000
3π‘₯ 2 βˆ’2π‘₯+3
π‘₯β†’βˆž 2π‘₯ 2 +4
9. lim
10. lim
π‘₯β†’0
√π‘₯+6βˆ’βˆš6
π‘₯
π‘₯
βˆ’
11. lim π‘₯+1
4
5
π‘₯β†’4 π‘₯βˆ’4
12. lim
π‘₯
π‘₯β†’βˆ’βˆž |π‘₯|
2.1c Solve limits algebraically
Solve the following limits algebraically. Remember the following steps to solving limits:
1. Substitute (Plug-in) and Special Trig Functions (lim
π‘₯β†’0
sin π‘₯
π‘₯
= 1 and lim
π‘₯β†’
cos π‘₯βˆ’1
π‘₯
= 0)
2. Factor (common factor, factoring, perfect square trinomials, difference of
squares, difference/sum of cubes) and cancel (removable discontinuity)
3. Conjugate/Common Denominator
4. Use Graph and/or Table
1. lim (π‘₯ 2 βˆ’ 5π‘₯ βˆ’ 11)
12. lim cos π‘₯
π‘₯β†’0
13. lim 4 sin 2π‘₯
2. lim (π‘₯ 2 + 5π‘₯)
π‘₯β†’0
π‘₯+3
π‘₯β†’5 π‘₯ 2 βˆ’15
π‘₯βˆ’3
lim
π‘₯β†’3 π‘₯+2
π‘₯
π‘₯β†’0
15.
tan 7π‘₯
lim
π‘₯β†’0 sin 5π‘₯
3
3 cos π‘₯
lim βˆ’ π‘₯
π‘₯β†’0 π‘₯
(cos π‘₯βˆ’1)
lim 2π‘₯
π‘₯β†’0
π‘₯β†’0
16.
6. lim
17.
7.
2π‘₯ 2 βˆ’4π‘₯
π‘₯
π‘₯β†’0
2π‘₯ 3 βˆ’4π‘₯ 2
lim
π‘₯β†’0 π‘₯ 3 βˆ’π‘₯ 2
π‘₯ 2 βˆ’2π‘₯βˆ’3
lim
π‘₯β†’3 π‘₯βˆ’3
π‘₯ 2 +6π‘₯+8
lim π‘₯+4
π‘₯β†’βˆ’4
π‘₯ 3 βˆ’125
lim π‘₯βˆ’5
π‘₯β†’5
18. lim π‘₯+4
π‘₯β†’
22. lim
9.
10.
π‘₯β†’3
sin 5π‘₯
14. lim sin 3π‘₯
5. lim πœ‹
8.
π‘₯ 2 βˆ’ 5, π‘₯ ≀ 3
Find (a)
π‘₯ + 1, π‘₯ > 3
lim+ 𝑓(π‘₯) (b) limβˆ’ 𝑓(π‘₯) (c) lim 𝑓(π‘₯)
23. Let 𝑓(π‘₯) = {
π‘₯β†’0
3. lim
4.
2π‘₯
π‘₯β†’6
1
π‘₯β†’0
19. lim
βˆ’
1
4
π‘₯
1
βˆ’1
π‘₯βˆ’5
π‘₯β†’6 π‘₯βˆ’6
√π‘₯βˆ’2
20. lim π‘₯βˆ’4
π‘₯β†’4
√π‘₯+1βˆ’βˆš2
21. lim π‘₯βˆ’1
π‘₯β†’1
|π‘₯|
11. limπœ‹ 3 cos π‘₯
4
π‘₯β†’3
lim 𝑔(π‘₯) = 4
π‘₯β†’2
26. lim [𝑓(π‘₯) + 𝑔(π‘₯)]
π‘₯β†’2
𝑓(π‘₯)
]
𝑔(π‘₯)
π‘₯β†’2
27. lim [
28. lim [𝑓(π‘₯) βˆ— 𝑔(π‘₯)]
π‘₯β†’1
29. lim [5𝑓(π‘₯)]
π‘₯β†’1
30. lim [𝑓(π‘₯) βˆ’ 𝑔(π‘₯)]
π‘₯β†’2
31. lim [βˆšπ‘“(π‘₯) + 𝑔(π‘₯)]
π‘₯β†’2
3
32. lim [βˆ’ 𝑔(π‘₯)]
π‘₯β†’1
33. lim [𝑔(π‘₯)]2
π‘₯β†’2
lim 𝑔(π‘₯) = βˆ’3
π‘₯β†’1
π‘₯β†’3
π‘₯β†’3
25. Find the limits at x = -2, x = 0, and
x = 1 for the following function:
2;
π‘₯ < βˆ’2
βˆ’1;
π‘₯ = βˆ’2
βˆ’π‘₯ βˆ’ 2π‘₯; βˆ’2 < π‘₯ ≀ 0
𝑓(π‘₯) =
π‘₯2;
0<π‘₯<1
βˆ’2;
π‘₯=1
2
{
π‘₯ ;
1<π‘₯
Use the properties of limits to solve the following
lim 𝑓(π‘₯) = 5
π‘₯β†’3
π‘₯ βˆ’ 5, π‘₯ ≀ 3
Find (a)
π‘₯ + 2, π‘₯ > 3
lim+ 𝑓(π‘₯) (b) limβˆ’ 𝑓(π‘₯) (c) lim 𝑓(π‘₯)
24. Let 𝑓(π‘₯) = {
π‘₯β†’0 π‘₯
π‘₯β†’2
π‘₯β†’3
2
lim 𝑓(π‘₯) = 0
π‘₯β†’1
2.2a Limits at Infinity
Limits at Infinity (HA)οƒ  Horizontal asymptotes occur as x is approaching ∞( lim 𝑓(π‘₯) = π‘Ž)
π‘₯β†’±βˆž
Dominance
π‘₯
π‘₯2
= 0,
π‘₯2
π‘₯
= ±βˆž,
π‘Žπ‘₯ 3
𝑏π‘₯ 3
=
π‘Ž
𝑏
𝑒π‘₯π‘π‘œπ‘›π‘’π‘›π‘‘π‘–π‘Žπ‘™ > π‘π‘œπ‘™π‘¦π‘›π‘œπ‘šπ‘–π‘Žπ‘™ > π‘™π‘œπ‘”π‘  > π‘‘π‘Ÿπ‘–π‘”π‘ 
Infinite Limits (VA)οƒ  Vertical asymptotes occur when the denominator= 0 (lim 𝑓(π‘₯) = ±βˆž)
π‘₯β†’π‘Ž
1. Graphically: For the graph below, where do vertical and horizontal asymptotes occur?
2. For the following limits, first compute the limit algebraically then check it numerically
(table) and graphically (graph on the calculator). Where do horizontal and/or vertical
asymptotes occur?
1.
π‘₯+2
π‘₯βˆ’3
6.
2.
π‘₯+5
π‘₯ 2 +2π‘₯βˆ’15
7.
3.
2π‘₯ 2 βˆ’3π‘₯βˆ’1
2π‘₯βˆ’1
8.
4.
lim
10π‘₯ 5 βˆ’2π‘₯ 3 βˆ’1
π‘₯β†’βˆž 15π‘₯ 5 βˆ’3π‘₯+2
9.
5.
10π‘₯βˆ’1
π‘₯β†’βˆž 15π‘₯ 2 βˆ’3π‘₯+2
10.
lim
lim
π‘₯β†’βˆž
sin π‘₯
π‘₯
lim π‘₯𝑒 βˆ’π‘₯
π‘₯β†’βˆž
ln π‘₯
lim
π‘₯β†’βˆž π‘₯
lim 2βˆ’π‘₯ βˆ— π‘₯ 50
π‘₯β†’βˆž
π‘₯ 2 βˆ’3π‘₯
3π‘₯ 3 βˆ’27
2.3 Continuity
Continuity graphically (don’t lift your pencil)
Continuity algebraically – 3 Conditions
I.
II.
𝑓(π‘₯) exists (function is defined at a = filled in dot/value)
lim+ 𝑓(π‘₯) = limβˆ’ 𝑓(π‘₯) (left hand and right hand limits approach each other)
III.
𝑓(π‘₯) = lim 𝑓(π‘₯) (the limit in II is equal to I where the function is defined)
π‘₯β†’π‘Ž
π‘₯β†’π‘Ž
π‘₯β†’π‘Ž
Type of Discontinuities
I.
II.
Removable (hole) – removed when factors cancel out. Occurs when 𝑓(π‘₯) β‰  lim 𝑓(π‘₯)
π‘₯β†’
Jump Discontinuity – when a function/line jumps from one y-value to the other.
Occurs when lim+ 𝑓(π‘₯) β‰  limβˆ’ 𝑓(π‘₯)
III.
π‘₯β†’π‘Ž
π‘₯β†’π‘Ž
Infinite Discontinuity – occurs when denominator = 0 (see V.A.)
Intermediate Value Theorem
Suppose the function g is continuous on the closed interval [a,b]. For any real number d
between 𝑓(π‘Ž) and 𝑓(𝑏) there exist a point c between π‘Ž and 𝑏 such that 𝑓(𝑐) = 𝑑.
1. For the following graphs, state where the function is continuous and state the
location/type of discontinuities.
2. Determine if the following functions are continuous at the given x-values. If not, what
type of discontinuity is occurring?
a. Let f(x) be a function such that 𝑓(π‘₯) = {
1 βˆ’ 2 sin π‘₯ , π‘₯ < 0
. Is f(x) continuous at
𝑒 βˆ’4π‘₯ , π‘₯ β‰₯ 0
x=0?
3π‘₯ + 6, π‘₯ < 3
b. Show that f(x) is continuous at x = 3. 𝑓(π‘₯) = {
5π‘₯, π‘₯ β‰₯ 3
3. Are the following functions continuous?
2π‘₯ 3 βˆ’ 1, π‘₯ < 2
a. 𝑓(π‘₯) = {
6π‘₯ + 3, π‘₯ β‰₯ 2
b. 𝑓(π‘₯) = {
5π‘₯ + 7, π‘₯ < 3
7π‘₯ + 1, π‘₯ > 3
4π‘₯ 2 βˆ’ 2π‘₯, π‘₯ < 3
c. 𝑓(π‘₯) = { 10π‘₯ βˆ’ 1, π‘₯ = 3
30, π‘₯ > 3
4. Find a value k that makes the following functions continuous.
π‘˜π‘₯ 2 , π‘₯ ≀ 4
a. 𝑓(π‘₯) = {
π‘₯ + π‘˜, π‘₯ > 4
b. 𝑓(π‘₯) = {
c. 𝑓(π‘₯) = {
2π‘₯ + 9, π‘₯ ≀ 2
π‘˜π‘₯
,
2
π‘₯>2
π‘˜π‘₯ + 5, π‘₯ < 4
π‘₯ 2 βˆ’ π‘₯, π‘₯ β‰₯ 4
5. Let f be a defined function. Does a limit exist at x=2? Is the function continuous at
x=2.
2π‘₯ 2 βˆ’ 5π‘₯ + 2
,
𝑓(π‘₯) = {
π‘₯βˆ’2
1,
π‘₯β‰ 2
π‘₯=2
6. Does 𝑓(π‘₯) = π‘₯ 5 βˆ’ 4π‘₯ 2 + 1 cross the x-axis between the points [1,2]
π‘₯ 2 + 1, βˆ’3 ≀ π‘₯ ≀ 0
7. Does the graph of 𝑓(π‘₯) = {
cross the x-axis between the
βˆ’1 βˆ’ π‘₯ 2 βˆ’ π‘₯ 4 , 0 < π‘₯ ≀ 2
points [-3,2].
8. A particle moves along a continuous function, x(t), where x is the position at time t,
such that its position x(2)=5 and x(5)=2. Another particle moves such tht its position is
given by h(t) = x(t)-t. Explain why there must be a value for 2 < π‘Ÿ < 5 such that h(r)=0.
9. A scientist measures the height of redwood trees every week. The measurements are
taken perpendicular from the base of the tree. The data are shown in the table. Do the
data in the table support the conclusion that the tree’s height is 8 feet at some time
between 2 < 𝑑 < 3. Justify your answer.
t (years)
Height (in)
0
0
1
2.51
2
6.45
3
9.33
4
10.25
2.4 Average Rate of Change and Tangent Lines
Average rate of change is Slope of Secant Lines: 𝐴𝑣𝑔. π‘…π‘Žπ‘‘π‘’ =
𝑓(π‘₯2 )βˆ’π‘“(π‘₯1 )
π‘₯2 βˆ’π‘₯1
βˆ†π‘¦
= βˆ†π‘₯
Instantaneous Rate of Change is the Slope of the Tangent Line at a certain point (as a
limit approaches a number:
𝐼𝑛𝑠. π‘…π‘Žπ‘‘π‘’: lim
β„Žβ†’0
𝑓(π‘₯+β„Ž)βˆ’π‘“(π‘₯)
β„Ž
(Difference Quotient)
Slope of a Tangent Line at a Point – Use Point-Slope Form 𝑦 βˆ’ 𝑦1 = π‘š(π‘₯ βˆ’ π‘₯1 ) where m is
the slope found from the difference quotient and the point (π‘₯1 , 𝑦1 ) which is the point
where the tangent line is located.
1. Find the average rate of change for 𝑓(π‘₯) = 2π‘₯ βˆ’ 4 from [1,7].
2. Find the average rate of change for 𝑓(π‘₯) = 3π‘₯ 2 βˆ’ 3π‘₯ + 2 from [-3,3]
3. Find the average rate of change for 𝑓(π‘₯) = 𝑒 βˆ’π‘₯ + 2 from [0,1]
4. From the table, find the average rate of change from [4,10]
Time (sec)
Height (ft)
0
4
2
26
4
38
6
40
8
32
10
14
5. Using the graph, calculate the average rate of change from [0,8], [3,8], and [6,8].
6. Find the instantaneous rate of change for the function 𝑓(π‘₯) = 2π‘₯ βˆ’ 3 at x=1.
7. Find the instantaneous rate of change for the function 𝑓(π‘₯) = π‘₯ 2 + 1 at x=3.
8. What is the slope of the tangent line to the equation 𝑓(π‘₯) = 2π‘₯ 3 at x = 2?
9. What is the equation of tangent line to 𝑓(π‘₯) = √π‘₯ + 2 at the point (2,2)?
1
10. What is the equation of tangent line to 𝑓(π‘₯) = π‘₯ at the point x=4?
11. What is the equation of tangent line to 𝑓(π‘₯) = 3 at x=3?