f(x) = 5⋅x1 – 3⋅x1 + 2⋅x1 – ∀ xj ≥ 0 f(x) = 6⋅x1 x1 3⋅x1 x1 ∀ xj ≥ 0 f(x) = ∀ xj≥ 0 x2 x2 x2 5⋅x2 №1 + x3 a max + x3 + x4 + x5 = 5 + 3⋅x3 = 4 + 6⋅x3 + x4 = 11 + x2 – + 2⋅x2 + – x2 – + 3⋅x2 + №2 x3 – 2⋅x4 a max x3 + 6⋅x4 + x5 = 4 x3 + x 4 = 1 = 9 5⋅x3 6⋅x2 + x3 – 3⋅x1 – x2 + x3 + + 5⋅x3 + x1 x1 + 2⋅x2 + 3⋅x3 + f(x) = 7⋅x1 + x2 + 5⋅x1 + x2 + – 2⋅x2 + x1 – 3⋅x2 + ∀ xj ≥ 0 №3 x4 a max 6⋅x4 + x5 = 6 x4 – 7⋅x5 = 6 x4 + x5 = 6 №4 x3 – x4 a max x3 + 3⋅x4 + x5 = 5 4⋅x3 + x4 + x5 = 3 = 2 5⋅x3 f(x) = 8⋅x1 + x2 – 3⋅x3 – x1 + x2 + x3 + x3 2⋅x1 – x3 3⋅x1 ∀ xj ≥ 0 №5 a max + 2⋅x4 + x5 = 4 – 3⋅x4 + 5⋅x5 = 3 + 6⋅x4 + x5 = 6 №6 f(x) = x2 – 3⋅x3 – x4 – x5 a max = 2 –2⋅x1 – x2 + 2⋅x3 x1 + x2 + 4⋅x3 + x4 + 3⋅x5 = 8 + 6⋅x5 = 5 3⋅x1 + x2 – x3 ∀ xj ≥ 0 №7 f(x) = ∀ xj≥ 0 f(x) = ∀ xj ≥ 0 x1 – 2⋅x2 – x3 – x4 a max + x – x + x 2⋅x1 3 4 5 = 2 4⋅x1 + x2 + 3⋅x3 + x4 + 2⋅x5 = 7 + x3 + 2⋅x4 + x5 = 2 – x1 x2 – 6⋅x3 + x4 6⋅x1 + x2 + x3 + 2⋅x4 – x3 + 7⋅x4 – x1 + 2⋅x3 + x4 x1 №8 – 3⋅x5 a max + x5 = 9 + 8⋅x5 =14 + x5 = 3 №9 f(x) = –8⋅x1 – x2 – x3 + x4 a max + x + x + –2⋅x1 3⋅x3 4 5 = 5 3⋅x1 + x2 + x3 + 6⋅x4 + 2⋅x5 = 9 + 2⋅x3 – x4 + 2⋅x5 = 3 – x1 ∀ xj≥ 0 f(x) = – x1 + 3⋅x2 – x3 + x4 + 3⋅x3 + x4 2⋅x1 – x3 + 2⋅x4 + 3⋅x5 x1 3⋅x1 + 3⋅x2 + 6⋅x3 + 3⋅x4 + 6⋅x5 ∀ xj≥ 0 f(x) = ∀ xj≥ 0 № 10 a max = 4 = 4 =15 x4 – 3⋅x5 2⋅x2 x3 + x5 4⋅x1 + x2 + x3 + 3⋅x5 – x1 + 3⋅x2 – 8⋅x1 + 4⋅x2 + 12⋅x3 + 4⋅x4 + 12⋅x5 f(x) = 10⋅x1 + 5⋅x2 8⋅x1 + 16⋅x2 2⋅x2 3⋅x2 ∀ xj≥ 0 + № 11 a max = 6 = 1 =24 № 12 – 25⋅x3 + 5⋅x4 a max + 8⋅x3 + 8⋅x4 + 24⋅x5 =32 – x3 + x4 + x5 = 1 + 2⋅x3 – x4 + x5 =15 № 13 – x3 + x4 + 2⋅x5 a max f(x) = 6⋅x1 4⋅x1 + x2 + x3 + 2⋅x4 + x5 = 8 + x4 = 2 2⋅x1 – x2 ∀ xj ≥ 0 x1 + x2 + f(x) = –5⋅x1 – x2 + 3⋅x3 – x4 x1 + 2⋅x2 + 3⋅x3 + 4⋅x4 3⋅x2 – x3 + 4⋅x4 + 8⋅x4 4⋅x2 ∀ xj≥ 0 f(x) = 5⋅x1 3⋅x1 3⋅x1 x1 ∀ xj ≥ 0 + + + – 3⋅x2 + 2⋅x3 – 4⋅x2 + x3 2⋅x2 + x3 + 3⋅x2 f(x) = 7⋅x1 + x1 – x2 + 2⋅x1 + 2⋅x2 + 2⋅x1 + x2 ∀ xj ≥ 0 f(x) = 6⋅x1 – x1 5⋅x1 3⋅x1 ∀ xj ≥ 0 f(x) = ∀ xj ≥ 0 x3 – x3 x3 + x5 = 2 № 14 a max + x5 = 7 = 7 + x5 =12 № 15 x4 + x5 a max = 12 x4 + x5 = 16 + x5 = 3 № 16 x4 + x5 a max = 1 x4 + 2⋅x5 = 12 + x5 = 4 – x2 + 2⋅x3 – x4 + x5 + x2 + x3 + 2⋅x2 + x3 + x4 + x5 + 2⋅x2 + x5 3⋅x3 2⋅x1 + x2 + x3 + 2⋅x3 3⋅x1 – x3 x1 № 17 a max = 2 = 11 = 6 № 18 – 2⋅x4 – x5 a max + x4 + 3⋅x5 = 5 – x4 + 6⋅x5 = 7 + 2⋅x4 + x5 = 2 № 19 f(x) = x1 + 7⋅x2 + 2⋅x3 + x4 – x5 a max 6⋅x1 + 3⋅x2 + x3 + x4 + x5 = 20 = 12 + x4 4⋅x1 + 3⋅x2 + x5 = 6 3⋅x1 – 2⋅x2 ∀ xj≥ 0 № 20 f(x) = 2⋅x1 + x3 – x4 + x5 a max – x1 + 2⋅x2 + x3 = 2 3⋅x1 + 5⋅x2 + x3 + x4 + 2⋅x5 = 14 + x5 = 1 x1 – x2 ∀ xj ≥ 0 f(x) = 6⋅x1 – x1 2⋅x1 x1 ∀ xj ≥ 0 f(x) = ∀ xj ≥ 0 № 21 + x2 + x4 + 2⋅x5 a max + 2⋅x2 + x3 = 2 + 6⋅x2 + 2⋅x3 + x4 + x5 = 18 – 2⋅x2 + x5 = 2 3⋅x2 + – x1 + 2⋅x2 + x1 + x2 2⋅x1 + x2 + + f(x) = 3⋅x1 2⋅x1 + 2⋅x2 + 2⋅x1 – x2 x1 + x2 ∀ xj ≥ 0 f(x) = ∀ xj≥ 0 f(x) = ∀ xj ≥ 0 5⋅x2 + – x1 + x2 + x1 – 2⋅x2 2⋅x1 + x2 + x1 3⋅x1 – x1 3⋅x1 x3 – x4 + x5 x3 + x4 x3 + x4 + 2⋅x5 № 22 a max = 2 = 2 = 6 № 23 x3 – 2⋅x4 + x5 a max x3 + x4 + x5 = 6 + x4 = 2 + x5 = 2 x3 – x3 + x3 + № 24 x4 + x5 a max = 2 x4 = 2 x4 + 2⋅x5 = 10 + 5⋅x2 + 2⋅x3 – x4 + x5 + 4⋅x2 + x3 + x2 + x4 + 2⋅x2 + x3 + x4 + x5 № 25 a max = 12 = 1 = 3 f(x) = ∀ xj ≥ 0 5⋅x1 x1 –3⋅x1 2⋅x1 № 26 + x3 – x4 + x5 a max – x2 + x3 = 1 + x2 + x4 = 3 + 2⋅x2 + x3 + x4 + 2⋅x5 = 12 № 27 + 2⋅x3 – x4 + x5 a max f(x) = 7⋅x1 – x1 + x2 + x3 = 2 + x4 = 3 3⋅x1 – x2 5⋅x1 + 2⋅x2 + x3 + x4 + x5 = 11 ∀ xj ≥ 0 f(x) = x1 5⋅x1 – x1 3⋅x1 ∀ xj ≥ 0 f(x) = ∀ xj ≥ 0 f(x) = ∀ xj ≥ 0 – + + + № 28 + x + x + x 4⋅x2 3 4 5 a max + x + + x 5⋅x2 2⋅x4 3 5 = 28 + x4 = 2 2⋅x2 + x5 = 12 4⋅x2 8⋅x2 + 2⋅x3 + x4 – x5 – x1 + 2⋅x2 + x3 6⋅x1 + 3⋅x2 + x3 + x4 + x5 + x5 3⋅x1 – 2⋅x2 № 29 a max = 2 = 20 = 6 № 30 + x – x + x –2⋅x2 3 4 5 a max + + x + x + 5⋅x2 2⋅x5 = 14 3⋅x1 3 4 + x4 = 10 2⋅x1 + 5⋅x2 x2 + x5 = 1 x1 – f(x) = 7⋅x1 – x1 3⋅x1 2⋅x1 ∀ xj≥ 0 + + + + 2⋅x2 2⋅x2 + x3 4⋅x2 6⋅x2 + 2⋅x3 № 31 + x4 + 2⋅x5 a max + = 2 + x4 = 12 + x4 + x5 = 18 № 32 f(x) = ∀ xj ≥ 0 x1 – x1 2⋅x1 x1 f(x) = 5⋅x1 – x1 4⋅x1 x1 ∀ xj ≥ 0 f(x) = x1 x1 x1 x1 ∀ xj ≥ 0 + 3⋅x2 + x3 – x4 + x5 a max + 2⋅x2 + x3 + = 2 + x2 + x3 + x4 + 2⋅x5 = 6 – x2 + x5 = 1 № 33 + x2 – x3 + x4 + 2⋅x5 a max + 2⋅x2 + x3 + = 2 + x2 + x3 + 2⋅x4 + x5 = 8 + x2 + x5 = 2 № 34 + 2⋅x2 + x3 – x4 + x5 a max + x2 + 2⋅x3 + 2⋅x4 + x5 = 11 – 2⋅x2 + x4 = 2 + x2 + x5 = 3 f(x) = 10⋅x1 2⋅x1 – x1 x1 ∀ xj ≥ 0 + 5⋅x2 + 2⋅x3 – x4 + + 3⋅x2 + x3 + 2⋅x4 + + x2 + x4 – 3⋅x2 + f(x) = 2⋅x1 – x2 x1 2⋅x1 + 2⋅x2 x1 ∀ xj ≥ 0 f(x) = 4⋅x1 – x1 4⋅x1 3⋅x1 ∀ xj≥ 0 № 35 x5 a max x5 = 17 = 1 x5 = 3 – 3⋅x3 + x4 + x5 + 2⋅x3 + x4 + 3⋅x5 + 4⋅x3 + 8⋅x4 + 4⋅x5 – x3 + 7⋅x4 + x5 – x2 + x3 + 2⋅x4 – + x2 + x3 + 3⋅x2 + 2⋅x3 + x4 + + 2⋅x2 + f(x) = 2⋅x1 + 2⋅x2 + 4⋅x1 – 3⋅x2 + – x1 + 2⋅x2 x3 + 2⋅x4 – x3 + x4 № 36 a max = 6 = 16 = 7 № 37 x5 a max = 2 x5 = 13 x5 = 16 № 38 x5 a max = 12 = 2 ∀ xj≥ 0 6⋅x1 + 3⋅x2 + f(x) = 5⋅x1 9⋅x1 4⋅x1 3⋅x1 ∀ xj ≥ 0 f(x) = ∀ xj ≥ 0 x1 2⋅x1 2⋅x1 x1 f(x) = –5⋅x1 3⋅x1 2⋅x1 3⋅x1 ∀ xj ≥ 0 f(x) = ∀ xj ≥ 0 x3 + + 2⋅x2 – x3 + + x2 + x3 + + 3⋅x2 + – 2⋅x2 x4 + № 39 x4 + x5 a max x4 + 2⋅x5 = 26 x4 = 12 + x5 = 6 + 11⋅x2 + x3 + 2⋅x4 – x5 + 6⋅x2 + x3 + x4 + x5 + 5⋅x2 + x4 – x2 + x5 + x2 + x2 + 3⋅x2 + x2 + x3 – – 3⋅x3 + + x3 + – 2⋅x3 – 3⋅x2 + 2⋅x1 + x2 + x1 + x2 x1 – x2 x5 = 26 № 40 a max = 13 = 10 = 1 № 41 2⋅x4 a max x4 = 1 2⋅x4 + x5 = 6 x4 = 2 № 42 x3 – x4 + x5 a max x3 + x4 + 2⋅x5 = 6 + x4 = 2 + x5 = 1 № 43 f(x) = 8⋅x1 + x2 – 3⋅x3 a max x1 + x2 + x3 + 2⋅x4 + x5 = 4 + x3 – 3⋅x4 + 5⋅x5 = 3 2⋅x1 – x3 + 6⋅x4 + x5 = 6 3⋅x1 ∀ xj ≥ 0 f(x) = 2⋅x1 – x1 x1 x1 + + + + № 44 x2 + x3 – x4 + x5 a max x2 + x3 = 2 x2 + 2⋅x3 + 2⋅x4 + x5 =11 x2 + x5 = 3 ∀ xj≥ 0 f(x) = 9⋅x1 3⋅x1 2⋅x1 x1 ∀ xj ≥ 0 f(x) = ∀ xj ≥ 0 x1 x1 5⋅x1 2⋅x1 + + + – № 45 + – x + x 5⋅x2 2⋅x3 4 5 a max + x =12 4⋅x2 3 3⋅x2 + x3 + 2⋅x4 + x5 =17 + x5 = 3 3⋅x2 № 46 + 3⋅x2 + x3 + x4 + x5 a max – x2 + x3 = 1 + 2⋅x2 + 2⋅x3 + x4 + 3⋅x5 =17 + x2 + x5 = 4 + x3 + 2⋅x4 – x5 f(x) = 5⋅x1 4⋅x1 + 3⋅x2 + 2⋅x3 + x4 + x5 + x4 3⋅x1 + x2 + x5 3⋅x1 + 2⋅x2 ∀ xj ≥ 0 f(x) = ∀ xj≥ 0 f(x) = ∀ xj ≥ 0 x1 4⋅x1 6⋅x1 3⋅x1 + x2 + x3 + 2⋅x4 – – 3⋅x2 + x3 + 3⋅x2 + x3 + x4 + + 4⋅x2 + № 47 a max =13 = 3 = 6 № 48 x5 a max =12 x5 =26 x5 =12 № 49 – 7⋅x2 – x3 + x4 + x5 a max –x1 + 2⋅x2 + x3 = 2 9⋅x1 + x2 + x3 + x4 + 2⋅x5 =26 + x5 = 6 3⋅x1 – 2⋅x2 f(x) = 4⋅x1 –x1 2⋅x1 x1 ∀ xj ≥ 0 + 8⋅x2 + x3 + 2⋅x4 – x5 + 2⋅x2 + x3 + 6⋅x2 + x3 + x4 + x5 – x2 + x5 № 50 a max = 2 =13 = 1 f(x) = 3⋅x1 x1 2⋅x1 3⋅x1 ∀ xj ≥ 0 – x2 – x3 + – x2 + + x2 + x3 + + 2⋅x2 – № 51 x4 a max x4 + 2⋅x5 = 3 2⋅x4 + 3⋅x5 = 6 3⋅x4 + 8⋅x5 = 5 № 52 f(x) = x1 – 3⋅x2 + x3 + 2⋅x4 – x5 a max – x1 + 2⋅x2 + x3 = 2 + x4 = 2 x1 + x2 x1 + 2⋅x2 + x3 + x4 + x5 = 5 ∀ xj ≥ 0 № 53 x2 + x3 – 2⋅x4 + x5 a max f(x) = = 2 – x1 + 2⋅x2 + x3 – x + x = 2 2⋅x1 2 4 2⋅x1 + 2⋅x2 + x3 + x4 + x5 = 6 ∀ xj ≥ 0 № 54 f(x) = 5⋅x2 + x3 – x4 + x5 a max – x1 + x2 + x3 = 2 + x4 = 2 x1 – 2⋅x2 x1 + x2 + 2⋅x3 + 2⋅x4 + x5 =11 ∀ xj≥ 0 f(x) = 9⋅x1 3⋅x1 – x1 2⋅x1 ∀ xj ≥ 0 f(x) = ∀ xj≥ 0 + 2⋅x2 – x3 + x5 + 4⋅x2 + x3 + x2 + x4 + 3⋅x2 + x3 + 2⋅x4 + x5 № 55 a max =12 = 1 =17 + x3 + x4 + x5 x1 x1 – x2 + x3 + x4 3⋅x1 + x2 5⋅x1 + 2⋅x2 + 2⋅x3 + x4 + 3⋅x5 № 56 a max = 1 = 3 =17 № 57 f(x) = 3⋅x1 – x1 3⋅x1 4⋅x1 ∀ xj≥ 0 – 2⋅x2 + x3 + 2⋅x4 – x5 a max + x2 + x3 = 2 – x2 + x4 = 3 + 3⋅x2 + 2⋅x3 + x4 + x5 =13 – x3 + x4 + x5 f(x) = 9⋅x1 – x1 + 2⋅x2 + x3 + x4 4⋅x1 + 3⋅x2 9⋅x1 + x2 + x3 + x4 + 2⋅x5 ∀ xj ≥ 0 f(x) = 5⋅x1 6⋅x1 – x1 3⋅x1 ∀ xj ≥ 0 f(x) = ∀ xj ≥ 0 ∀ xj ≥ 0 f(x) = 5⋅x2 + x3 + 2⋅x4 – x5 3⋅x2 + x3 + x4 + x5 + x4 2⋅x2 + x5 4⋅x2 № 59 a max =26 = 2 =12 № 60 10⋅x2 + x3 + 2⋅x4 – x5 a max – x1 + 2⋅x2 + x3 = 2 + x4 =10 2⋅x1 + 5⋅x2 + + x + x + x 6⋅x2 2⋅x1 3 4 5 = 1 f(x) = 3⋅x1 3⋅x1 3⋅x1 7⋅x1 ∀ xj ≥ 0 f(x) = + + + + № 58 a max = 2 =12 =26 № 61 + 2⋅x2 + x3 – x4 a max + x2 + 3⋅x3 + x4 + 2⋅x5 = 5 + 2⋅x2 + x3 + x5 = 5 – 2⋅x2 + 2⋅x3 – x5 = 5 x1 + 2⋅x2 5⋅x1 + 10⋅x2 x2 6⋅x2 x1 + 2⋅x1 – № 62 – x3 – x4 a max + 5⋅x3 + 15⋅x4 + 10⋅x5 =25 – x3 + 6⋅x4 + 2⋅x5 = 3 + x3 – x4 – x5 = 5 x2 – 2⋅x3 – x2 + x4 x4 + № 63 a max x5 = 4 3⋅x1 + 2⋅x2 x1 + x2 + ∀ xj≥ 0 f(x) = ∀ xj ≥ 0 + x4 + x5 = 7 x3 + 2⋅x4 + 6⋅x5 = 9 x1 – 3⋅x2 + x3 2⋅x1 + x2 + x3 + 2⋅x3 x1 + 3⋅x3 3⋅x1 f(x) = –2⋅x1 – x2 + x3 3⋅x1 + x2 + x3 + 3⋅x3 2⋅x1 – x3 3⋅x1 ∀ xj≥ 0 № 64 a max + x4 + x5 = 4 – x4 – 3⋅x5 = 3 + x4 + 2⋅x5 = 6 № 65 – 5⋅x4 a max + 2⋅x4 + 3⋅x5 = 7 + 2⋅x4 – x5 = 1 + x4 + 6⋅x5 = 9
© Copyright 2026 Paperzz