Finite Elements Method in Fracture Mechanics Naoto Sakakibara outline Introduction Collapsed Quadrilateral QPE Element Enriched Element Demo – NS-FFEM1.0 Result Extended Finite Element Method Summary FEM in Fracture Mechanics Early Application for Fracture Mechanics > 5-10% error for simple problem *1 > solutions around tip cannot guaranteed*2 u~ ~1 r r a. Crack tip element – Quarter Point Element b. Enriched Element – Add another DOF Collapsed Quarter Point Element •Henshell and Shaw,1975 •1/√r variation for strain can be achieved •Same shape function N, •Standard FEM can be used •Collapsed Element, more accuracy than other QPEs. ui ( x) N ij ( x)u j 7 4 3 Ex) 473 H/4 8 6 6 8 3H/4 1 5 2 1 5 2 0 0.2 0.4 0.6 0.8 1 Transition Element Lynn and Ingraffea, 1978 Combined with QPE element Improving the accuracy of SIF, under special configuration Located between Normal Element & QPE L 2 L 1 L 4 Collapsed QPE (1,0) (βL,0) (L,0) Meshing tips Suggestion •L-QPE/ 4a ~ 0.05-0.2 •L-QPE/L-Tra. ~ 1.5244 •Number of QPE ~ 6 – 12 a L -Tra. L -QPE Quarter Point Element Transitional Element Isoparametric Element Note: No optimal element size! Enrich Element •Adding the analytic expression of the crack tip field to the conventional FEM ui N k uik K I (Q1i N k Q1k ) K II (Q2i N k Q2ik ) k k k Singular field term General FEM QI 1 Drawbacks •Additional DOF Not able to use general FEM •Higher order more integration point •Incompatibility in displacement Transition element 1 1 cos sin 2 G 2 2 2 Part of the solution of displacement field K 21 K 11 u K F KI 22 K F ' K II 12 NS-FFEM ver1.0 Method •Gaussian Elimination •Algebraic BC B,D Input •CPE4,CPE8,QPE8+Transitional •Mesh number •Geometry •Material Property Output •SIF (QPDT) •σ, ε •u, v Deformed Configuration ABAQUS QPE with CPE8 NS-FFEM with QPE Result-1 SIF QPDT method KI 2G 2 (v ' B v ' D ) 1 L SIF DCT method 2G 2 KI ((v'B v'D ) (v'C v'E ) 1 L E C D B Result - 2 Enriched by singular function around tip. Extended FEM-1 n mt mf n j 1 k 1 l 1 h 1 u (x) N j (x)u j N k (x)( Fl (x)b k ) N h (x) H ( (x))a h F - Singular field function EII EI D A II I B FI FII C H – Discontinuous function •H – step, sign, etc. •εI(x), εII(x) – different function •a – associated with displacements at E & F •Mesh – independent from crack Extended FEM-2 Discontinuous Function H Singular field Function Summary 1.QPE Transitional • DOF ~ # of nodes • Mesh size, no optimal size • Mesh, depend on crack 2.Singular Field • Additional DOF • More Integration point at crack tip element • Mesh, depend on crack 3.Singular Field Discontinuous • Additional DOF • Mesh, independent from crack • No remeshing for crack growth n mt mf n j 1 k 1 l 1 h 1 u (x) N j (x)u j N k (x)( Fl (x)b k ) N h (x) H ( (x))a h Reference Chona, R., Irein, G., and Sanford, R.J. (1983). The influence of specimen size and shape on the singurarity-dominated zone. Proceedings, 14th National Symposium on Fracture Mechanics, STP791,Vol.1, American Soc. for Testing and Materials, (pp. I1-I23). Philadelphia. I.L.Lim, I.W.Jhonston and S.K.Choi. (1993). Application of singular quadratic distorted isoparametric elements in linear fracture mechanics. International journal for numerical methods in engineering , Vol.36, 2473-2499. I.L.Lim, I.W.Johnston and S.K.Choi. (1992). On stress intensity factor computation from the quater-point element displacements. Communications in applied numerical methods , Vol.8, 291-300. Mohammad, S. (2008). Extendet finite element. Blackwell Publishing. Nicolas Moes, John Dolbow and Ted Belystschko. (1999). A finite element method for crack growth withiout remeshing. International jounarl for numerical methods in engineering , 131-150. Sanford, R. (2002). Principle of Fracture Mechanics. Upper Saddle River, NJ 07458: Pearson Education, Inc.
© Copyright 2026 Paperzz