Discrete Math in High Schools By: Caleb Petrie What is Discrete Math? • Focus is on things that are finite or countable • Opposite idea is continuous • Subcategories: Graph Theory , Combinatorics, Coding Theory, some Number Theory What is Graph Theory? •Not your typical graph theory •Instead, you have a set of vertices •Edges between those vertices A Definition • The degree of a vertex is the number of edges coinciding with that vertex Practical Examples • Let vertices be cities, edges represent a connecting flight • Let vertices represent people, edge represents an acquaintance Practical Examples • Shortest Path Research • Uniformly (3,r) Regular Graphs • Pick 3 vertices in a graph, and see how many neighbors those three vertices have. • What kind of structure is necessary? How to Connect to High Schools? • Introduce students to fundamentals of graph theory • Does not require advanced mathematical background • Uses some basic tools like permutations, combinations, and multiplication rule (Algebra 2 standards--probability) First Theorem of Graph Theory • Idea: To have students come up with a conjecture based on many examples. • Fill out a chart to notice pattern • Ask them why they think the pattern makes sense 4 8 8 16 7 14 Goal • Have students recognize the pattern • Can they conjecture that 2 x ( # of edges) = sum of degrees ? Bridge of Konigsberg Represented as a Graph • Area of land --- vertex in the graph • Bridge --- edge in the graph Theorem • In a connected graph, there is a solution if and only if every vertex has even degree Ways to Make Interactive • Draw pictures • Build their own graphs Interesting Website • http://oneweb.utc.edu/~ChristopherMawata/petersen/ Thank You
© Copyright 2026 Paperzz