What is seismic sensor?

Introduction to seismic sensors
(subject 3.2)
Peter Novotny
PACMAN meeting, CERN, 7 October 2014
What is seismic sensor?
Instrument which measures ground motion.
(Not only earthquakes!)
Ground Motion in frequency domain
Power Spectral Density – PSD
of ground motion
Cultural
noise
Micro seismic
peak
RMS of ground motion
How does seismic sensor work?
Relative motion
(mass to ground)
𝑦
π‘˜
π‘š
𝑐
Ground acceleration
𝑀
↕
Absolute motion (ground)
Dynamic described by 2nd Newton’s law => Forced damped harmonic oscillator.
π’Žπ’š + π’„π’š + π’Œπ’š = βˆ’π’Žπ’˜
How does seismic sensor work?
Transfer functions:
𝑇𝑀𝑦 =
π‘Œ
π‘Ÿπ‘’π‘™π‘Žπ‘‘π‘–π‘£π‘’ π‘‘π‘–π‘ π‘π‘™π‘Žπ‘π‘’π‘šπ‘’π‘›π‘‘
=
π‘Š π‘Žπ‘π‘ π‘œπ‘™π‘’π‘‘π‘’ π‘‘π‘–π‘ π‘π‘™π‘Žπ‘π‘’π‘šπ‘’π‘›π‘‘
Laplace
transform
π’Žπ’š + π’„π’š + π’Œπ’š = βˆ’π’Žπ’˜
𝑇𝑀𝑦
π‘Œ
π‘Ÿπ‘’π‘™π‘Žπ‘‘π‘–π‘£π‘’ π‘£π‘’π‘™π‘œπ‘π‘–π‘‘π‘¦
=
=
π‘Š π‘Žπ‘π‘ π‘œπ‘™π‘’π‘‘π‘’ π‘£π‘’π‘™π‘œπ‘π‘–π‘‘π‘¦
𝑇𝑀𝑦
π‘Œ
π‘Ÿπ‘’π‘™π‘Žπ‘‘π‘–π‘£π‘’ π‘‘π‘–π‘ π‘π‘™π‘Žπ‘π‘’π‘šπ‘’π‘›π‘‘
=
=
π‘Š π‘Žπ‘π‘ π‘œπ‘™π‘’π‘‘π‘’ π‘Žπ‘π‘π‘’π‘™π‘’π‘Ÿπ‘Žπ‘‘π‘–π‘œπ‘›
Natural
frequency
𝝎𝟎 =
π’Œ
π’Ž
!! Information about absolute motion is in relative motion!!
𝝎/𝝎𝟎
How we measure relative motion?
Using different types of transducers:
β€’ Pen (mechanical seismometers - obsolete)
β€’ Resistive
β€’ Capacitive
β€’ Piezoelectric
β€’ Optical (Interferometers, encoders)
β€’ Inductive – coil + magnet
β€’ Eddy current
β€’ LVDT - Linear variable differential transformer
‒…
Seismic sensor parameters
β€’ Bandwidth – fmin - fmax
β€’ Sensitivity S – conversion factor from D,V,A to Volts
β€’ Self noise N – determine resolution
β€’ Resolution R = S/N – smallest measureable value
β€’ Dynamic range – Max/Min measureable value
β€’ Active/passive – need of power supply
‒…
requirements on sensor
β€’ Bandwidth = (0.1 – 100) Hz
β€’ Resolution = ↑ Sensitivity and ↓ Self-noise
β€’ for
R = 0.1um
β€’ for NANO STABILISATION R = 0.1nm
β€’ Stray magnetic fields resistance
β€’ Weight < few kg & compact size
β€’ Temperature stability
β€’ β€œRadiation resistance” => only for stabilisation
β€’ Price β‰ˆ 4000 sensors for CLIC
‒…
Geophones
β€’ Output voltage proportional to ground velocity
above natural frequency.
β€’ Simple and compact solution
requirements
οƒΌ Low noise
οƒΌ Weight and size
οƒΌ Price
× Natural freq. > 10 Hz
× Magnetic resistance
Geophones with feedback => seismometers
β€’ Utilise the feedback control of mass position to extend bandwidth to low frequencies.
Seismic
mass
Leaf spring
sensing & force
coils
Geophones with feedback => seismometers
β€’ Output voltage is proportional to ground velocity in certain frequency bandwidth.
requirements
οƒΌ
οƒΌ
οƒΌ
β€’
×
×
Very low noise
Resolution
Broad bandwidth
Weight and size
Magnetic resistance
Price
Accelerometers
β€’ Output voltage proportional to ground
acceleration below natural frequency.
β€’ Different types:
β€’ Piezoelectric, piezoresistive, capacitive,
Force Balanced (FBA)
β€’ Possibility of utilizing MEMS
Piezoelectric
MEMS capacitive acc.
Principle
+ size and price reduction
- high self noise
requirements
οƒΌ
οƒΌ
β€’
×
×
Bandwidth
Magnetic resistance
Price
Higher noise at lower freq.
Resolution
MEMS realisation
Final product
Noise in seismic sensors
Interferometer
β€’ Sources of noise:
β€’ Thermomechanical (Brownian) noise
Model
Noise
[um*s-2/Hz1/2]
87
0.9 @1Hz
0.25 @10Hz
0.1 @100Hz
bb rms <4um*s-2
Wilcoxon
731A
0.3 @2Hz
0.1 @10Hz
0.04 @100Hz
Brüel & Kjær
8340
14.7 @0.1Hz
14.7 @55Hz
393B31
0.6 @1Hz
0.1 @10Hz
0.04 @100Hz
SF1600S.A
3 in 0.1-100Hz BW
TSA-100S
rms 0.22@1Hz
rms 0.2@10Hz
rms 0.7@10Hz
Producer
Endevco
β€’ Molecular collisions with mass
β€’ Thermoelectrical (Johnson) noise
β€’ Random thermal excitation
of charge carriers
β€’ Schottky noise
Capacitive
sensor
β€’ Random movement of charge across
potential barriers
β€’ Flicker 1/f noise
β€’ Impurities in semiconductors
β€’ Discretisation noise
β€’ ADC converters
PCB
COLIBRYS
Metrozet
Classification of seismic sensors
Output voltage proportional to:
β€’ Displacement
β€’ Velocity:
β€’ geophones
β€’ feedback geophones =
seismometers
β€’ Acceleration:
β€’ Accelerometers
β€’ Force Balanced Accelerometers
(FBA)
By type of sensing transducer:
β€’
β€’
β€’
β€’
β€’
Capacitive
Inductive
Piezoelectric
Optical
…
Other classifications:
β€’ Bandwidth
β€’ Short period, Long period, Broad band,
Very BB
β€’ Signal intensity
β€’ Strong motion, High sensitivity
Few sensors and their producers
Producer
GURALP
ion (Sensor Nederland B.V.)
Sercel (Mark Products)
Kinemetrics (Streckeisen)
Nanometrics
REFTEK
Lennartz electronic
Metrozet
Eentec
SINUS
GeoSIG
Endevco
Wilcoxon
DYTRAN
DJB Instruments
MMF
Brüel & Kjær
PCB
COLIBRYS
R-sensors
METTECH
GEOTECH INSTRUMENTS
type of sensors
Seismometers
geophones
geophones
Seismometers + FBA
Seismometers
Seismometers
Seismometers
Seismometers + FBA
FDBCK MET geophones + FBA
Piezo-velocity sensor
geophones + FBA
accelerometers
accelerometers
accelerometers
accelerometers
accelerometers
accelerometers
accelerometers
accelerometers
MET geophones + acc
MET
Seismometers
Secondments
β€’ Development of the seismic sensor for
stabilisation of the Final Focus (of CLIC)
β€’ Equivalent of 7 months
β€’ High precision mechanic
manufacturer
(already started)
β€’ Their measuring and control system
β€’ 3 months starting in March 2015
β€’ Project:
β€’ Measurement and adjustment
techniques for precision applications
Thank you for your
attention!