Calculus 1 Lecture Notes Section 2.6 Page 1 of 6 Section 2.6: Derivatives of Trigonometric Functions Big Idea: The shortcut for taking the derivatives of the six trigonometric functions is to memorize the formulas in the table below. Big Skill: You should be able to take the derivative of functions made up of combinations of trigonometric and power functions. d sin x cos x dx d cot x csc 2 x dx d cos x sin x dx d sec x sec x tan x dx d tan x sec 2 x dx d csc x csc x cot x dx Before we can prove these derivatives, we need to establish some helpful limits, because we stumble upon them in applying the definition of the derivative to the sine function: sin x h sin x d sin x lim h 0 dx h sin x cos h sin h cos x sin x lim h 0 h sin x cos h sin x sin h cos x lim lim h 0 h 0 h h cos h 1 sin h sin x lim cos x lim h 0 h 0 h h Prove: lim sin 0 (Lemma 6.1) 0 Notice from the figure that 0 ≤ sin θ ≤ θ. lim 0 lim sin lim 0 0 0 0 lim sin 0 0 lim sin 0 0 (by the Squeeze Theorem) Calculus 1 Lecture Notes Section 2.6 Page 2 of 6 Prove: lim cos 1 (Lemma 6.2) 0 lim cos lim 1 sin 2 0 0 lim 1 sin 2 0 1 lim sin 0 2 1 Prove: lim sin 0 Notice from the figure that: Area ΔOPR < Area sector OPR < Area ΔOQR Area ΔOPR = ½(base)(height) = ½(1)(sin θ) 1 1 2 Area sector OPR = r 2 1 2 2 2 Area ΔOQR = ½(base)(height) = ½(1)(tan θ) ½ sin θ < ½ θ < ½ tan θ Divide through by ½ sin θ 1< 1> sin sin lim 1 lim 0 tan sin > cos θ sin 0 1 lim < sin 1 lim cos 0 sin lim 1 0 (by the Squeeze Theorem) 0 1 (Lemma 6.3) Calculus 1 Lecture Notes Section 2.6 Prove: lim 0 lim 0 1 cos 1 cos Page 3 of 6 0 (Lemma 6.4) 1 cos 1 cos lim 0 1 cos 1 cos 2 lim 0 1 cos sin 2 lim 0 1 cos sin sin lim lim 0 0 1 cos 0 Now we can complete our computation for the derivative of the sine function. Theorem 6.1: Proof: d sin x cos x dx sin x h sin x d sin x lim h 0 dx h sin x cos h sin h cos x sin x lim h 0 h sin x cos h sin x sin h cos x lim lim h 0 h 0 h h cos h 1 sin h sin x lim cos x lim h 0 h 0 h h sin x 0 cos x 1 cos x Calculus 1 Lecture Notes Section 2.6 Theorem 6.2: Proof: Page 4 of 6 d cos x sin x dx cos x h cos x d cos x lim h 0 dx h cos x cos h sin x sin h cos x lim h 0 h cos x cos h cos x sin x sin h lim lim h 0 h 0 h h cos h 1 sin h cos x lim sin x lim h 0 h 0 h h cos x 0 sin x 1 sin x Theorem 6.3: d tan x sec 2 x dx Proof: d d sin x tan x dx dx cos x d d sin x cos x sin x cos x dx dx 2 cos x cos 2 x sin 2 x cos x 2 1 cos x 2 sec 2 x d cot x csc 2 x dx d sec x sec x tan x dx d csc x csc x cot x dx Calculus 1 Lecture Notes Practice: d 5sin x 1. dx 2. d 2 x 2 cos x dx 3. d 4 tan x 3cot x dx 4. d 4 x sin x dx d x2 5. dx csc x Section 2.6 Page 5 of 6 Calculus 1 Lecture Notes 6. d cos 2 x dx 7. d cos 2 x dx 8. d cos x 2 dx Section 2.6 9. Find the equation of the tangent line to y = f(x) = cos x at x = / 2. 10. Find f 37 x and f 240 x for f(x) = cos x. Page 6 of 6
© Copyright 2025 Paperzz