IP GEOLOCATION ALGORITHM 6.1 The Location Algorithm minRTT = propagation delay + extra delay (due to extra circular routes) ∆T measured= ∆t + ∆t0 (Pseudo -distance) PD = ∆Tmeasured.α (Actual distance) D = ∆t.α PD = (∆t+∆t0).α PD = ∆t. α + ∆t0.α PD = D+∆t0. α D = actual distance from the landmark. C = speed of light a = X(c) i.e. Speed of digital info in fiber optic cable X = factor of c with which digital info travels in fiber optic cable. ∆T = actual propagation delay along the greater circle router/paths. ∆t0 = the extra delay causing overestimation. PD = pseudo distance GRAPHICALLY Figure 14: Solving the system in 2D plane H: host L1: Landmark 1 L2: landmark 2 L3: landmark 3 D1= (XL1 - Xh) 2 (YL1 - Yh) 2 ……………………………………… (2) FROM (1) & (2) PD1= (XL1 - Xh) 2 (YL1 - Yh) 2 + T0 ……………….. (A) Similarly for other 2 landmarks: PD2 = (XL2 - Xh) 2 (YL2 - Yh) 2 t 0 ……………….. (B) PD3 = (XL3 - Xh) (YL3 - Yh) 2 t 0 ………………...(C) 2 We need to linearize (A), (B) & (C) to solve them USE TAYLOR SERIES: n 0 f ( n ) (a)( x a) n n! f x 0 x x 0 f '' x 0 x x 0 f x f x0 1! 2! Considering the simplified first part f x f x0 f x0 x x0 Put x x0 x f x f x0 f ' x0 x ………………………… (3) Hence to compute the original value of X an arbitrary value x0 is required, this is done by simple Trilateration. We know that H x X est X ……………. (D) H Y Yest Y …………….. (D) Also E st Di Hx X est 2 H y Yest 2 ………………………….. (4) From (3) & (4) PDi Est Di d Est Di X d Est Di Y a.t 0 dX dY After carrying out partial differentiation PDi Est Di X Est X li dX X YEst Yli dY Now we need to solve for X , Y , T0 Y a t 0 X Est X l1 PD1 E st D1 E st D1 PD E D X Est X l 2 st 2 2 E D st 2 PD3 E st D3 X X l3 Est E st D3 YEst Yli E st D1 YEst Y12 E st D2 YEst Y13 E st D3 c X c Y t c Solution from (4) is put in eq (D) to get new estimations. Hx, HY becomes the new estimated position.
© Copyright 2026 Paperzz