International Journal of Mathematics Research.
ISSN 0976-5840 Volume 9, Number 1 (2017), pp. 5-12
© International Research Publication House
http://www.irphouse.com
Certain Type of Pathway Fractional Integral
Operator Associate via General Class of Polynomial
Hemlata Saxena1 and Rajendra Kumar Saxena2
Professor of Mathematics1 and Asst. Professor of Mathematics2
1&2
Career Point University, Kota (Rajasthan) India.
Abstract
In the present paper we consider product of some special functions with a
general class of polynomial via pathway fractional integral operator .This
operator generalizes of the Riemann-Liouville fractional integral operator. Our
results are quite general in nature .Some known and new results are also obtain
here.
Keywords: Pathway fractional integral operator/ M-Series/ New generalized
Mittag-Leffler function/ a general class of polynomials
INTRODUCTION
DEFINITION: Let π(π₯) β πΏ(π, π) , π β πΆ , π
( π) > 0, π > 0 and let us take a
βPathway parameterβ πΌ < 1.Then the pathway fractional integration operator is
defined by Nair [8]
(π ,πΌ)
(π0+ π) (π₯)
π
(
= π₯ β«0
π₯
)
π(1βπΌ)
π
[1 β
π(1βπΌ)π‘ (1βπΌ)
]
π₯
π(π‘)ππ‘
......(1.1)
whenπΌ = 0 , π = 1 πππ π is replaced by π β 1 in (1.1) it yields
π
1
π₯
(πΌ0+ π)(π₯) = Π(π) β«0 (π₯ β π‘) πβ1 π(π‘)ππ‘
β¦(1.2)
which is the left β sided Riemann-Liouville fractional integral defined by
Samko et. al.[9].
Hemlata Saxena and Rajendra Kumar Saxena
6
The pathway model is introduced by Mathai [5] and studied further by Mathai and
Houbold [6] [7].
For π
(πΌ) > 0, the pathway model for scalar random variables is represented by the
following probability density function.
π½
π(π₯) = π|π₯|πΎβ1 [1 β π(1 β πΌ)|π₯|πΏ ]1βπΌ
.......(1.3)
πΎ > 0, πΏ > 0, π½ β₯ 0 , {1 β π(1 β πΌ)|π₯|πΏ } > 0, ββ < π₯ < β,
where c is the normalizing constant and πΌ is pathway parameter. For real, the
normalizing constant is as follows:
πΎ
π=
πΎ
πΎ
π½
1 πΏ[π(1βπΌ)]πΏ π€( 1βπΌ )
πΎ
π½
πΎ
2
π€( ) π€(
β )
πΏ
πΌ<1
,
.......(1.4)
1βπΌ
πΏ
=
π½
1 πΏ[π(1βπΌ)]πΏ π€(πΏ + 1βπΌ + 1)
π½
πΎ
2
+ 1)
π€( ) π€(
1βπΌ
,
πΏ
1
for 1βπΌ β
πΎ
πΏ
> 0, πΌ > 1
......(1.5)
πΎ
1 πΏ[ππ½]πΏ
=2
πΎ
πΏ
π€( )
,
for πΌ β 1
......(1.6)
For πΌ < 1, it is a finite range density with [ 1 β π(1 β πΌ)|π₯|πΏ ] > 0 and (1.3) remains
in the extended generalized type-1 beta family. For πΌ < 1, the pathway density in
(1.3) includes the extended type-1 beta density, the triangular density, the uniform
density and many other p.d. f.
when πΌ > 1, we write 1 β πΌ = β(πΌ β 1) , then
(π ,πΌ)
(π0+ π) (π₯)
π
(β
= π₯ β«0
π₯
)
π(πΌβ1)
π
[1 +
π(πΌβ1)π‘ β(πΌβ1)
]
π₯
π(π₯) = π |π₯|πΎβ1 [1 + π(πΌ β 1)|π₯|πΏ ]
Where
π½
πΌβ1
β
π(π‘)ππ‘
...... (1.7)
πΌ > 1, πΏ > 0, π½ β₯ 0, ββ < π₯ < β,
which is extended generalized type-2 beta model for real x, It includes the type-2 beta
density, the F density, the student-t density, the Cauchy density and many more.
Here, we consider only the case of pathway parameter πΌ < 1. For πΌ β 1 both (1.3)
and (1.7) take the exponential form, since.
Certain Type of Pathway Fractional Integral Operator Associate via General Classβ¦
7
π
πππ |π₯|πΎβ1
π
[1 β π(1 β πΌ)|π₯|πΏ ]1βπΌ
πΌβ1
π
β
πππ |π₯|πΎβ1
=
π
[1 + π(πΌ β 1)|π₯|πΏ ] πΌβ1
πΌβ1
= π|π₯|πΎβ1 π βπΌπ|π₯|
πΏ
.........(1.8)
π
For β 1β , [1 β
π(1βπΌ)π‘ 1βπΌ
]
π₯
(π ,1)
(π0+
ππ
β π β π₯ π‘ , the operator (1.1) reduces to the following form
ππ
β
π) (π₯) = π₯ π β«0 π β π₯ π‘ π(π‘)ππ‘
ππ
= π₯ π πΏπ ( π₯ )
......(1.9)
It reduces to the Laplace integral transform of f with parameter
ππ
π₯
.
In this paper we will integrate product of M-series, Foxβs H-function and generalized
Mittag-Leffler function by means of pathway model.
The following general class of polynomials introduced by Srivastava [13]
[πβ ] (βπ)ππ
πππ [π₯] = βπ=0π
= π1 (π)
π΄
π,ππ₯
π!
π
l =0,1,2
............(1.10)
When m is an arbitrary positive integer and the coefficients π΄π,π (π, π β₯ 0) are
arbitrary constants, real or complex
The generalized M-series is defined and studied by Sharma and Jain [11] as follows
β²
β²
πΌ β² , π½β² (π§) = ββ (π1 )πβ¦β¦.(ππ )π
π=0 (π β² ) β¦β¦.(πβ² )
π π
1 π
π π π
= π1 (π)
π§π
π€(πΌβ² π+π½ β² )
β¦(1.11)
Where π§, πΌ β² , π½ β² β πΆ, π
π(πΌ β² ) > 0
Here (ππβ² ) , (ππβ² ) are known as Pochammer symbols. The series (1.11) is defined
π
π
β²
when none of the parameters πππ
, π = 1,2, β¦ π is negative integer or zero. The series
in (1.11) is convergent for all z if π β€ π, it is convergent for |π§| < πΏ = πΌ πΌ if π = π +
1 and divergent, if π > π + 1 . When π > π + 1 and |π§| < πΏ, the series can
converge on conditions depending on the parameters.
Hemlata Saxena and Rajendra Kumar Saxena
8
The series representation of Fox H- function studied by Fox C [2] as follows:
π,π
π»π,π
[π§|
where π =
π
π£
(ππ , πΈπ )
β (β1) π(π) 1
β
] = βπ
(
)
,
β=1 π£=0 π£! πΈ
π§
(ππ, πΉπ )
β
πβ βπ£β1
πΈβ
(β = 1,2, β¦
and
β¦(1.12)
, π)
and
π
βπ
π=1 π€(ππ +πΉπ π) βπ=1 π€(1βππ +πΈπ π)
π(π) =
πβ β
π
βπ=π+1 π€(1βππ βπΉπ π) βπ
π=π+1 π€(ππ +πΈπ π)
β¦..(1.13)
Following are the convergence conditions:
π
π
π
π1 = βπ
π=1 πΈπ β βπ=π+1 πΈπ + βπ=1 πΉπ β βπ=π+1 πΉπ
β¦.(1.14)
π
π2 = βππ=1 πΌπ β βππ=π+1 πΌπ + βπ
π=1 π½π β βπ=π+1 π½π
β¦(1.15)
Recently, a new generalization of Mittag-Leffler function was defined by Faraj and
Salim [3] as follows:
(πΎ)
π§π
πΎ,πΏ,π
ππ
πΈπΌ,π½,π (π§) = ββ
π=0 π€(πΌπ+π½) (πΏ)
ππ
β¦(1.16)
Where π§, πΌ, π½, πΎ, πΏ β πΆ; πππ{ π
π(πΌ), π
π(π½), π
π(πΎ), π
π(πΏ)} > 0, π, π > 0
Further, generalization of Mittag- Leffler function was defined by Khan and Ahmed
[4] as follows:
π,π,πΎ,π
πΈπΌ,π½,π£,π,πΏ,π (π§) = ββ
π=0
(π)ππ (πΎ)ππ π§ π
π€(πΌπ+π½)(π£)ππ (πΏ)ππ
β¦(1.17)
Where πΌ, π½, πΎ, πΏ, π, π£, π, π β πΆ; π, π > 0 and π β€ π
π(πΌ) + ππ, and πππ{π
π(πΌ),
π
π(π½), π
π(πΎ), π
π(πΏ), π
π( π), π
π(π£), π
π(π), π
π(π)} > 0 If we take π = π£, π = π in
(1.17) it reduces to eq. (1.16).
Certain Type of Pathway Fractional Integral Operator Associate via General Classβ¦
9
Write generalized hypergeometric function was defined by Srivastava and Manocha
[12] as follows:
πππ [(π1 , π΄1 ), β¦ (ππ , π΄π ); (π1 , π΅1 ), β¦ , (ππ , π΅π ); π§]
π
β
π=1
= ββ
π=0 βπ
π€(ππ +π΄π π)π§ π
π=1 π€(ππ +π΅π π)π!
β²β²
πβ² β² βΞ²
ππβ²
[d t
]
β¦.(1.18)
MAIN RESULTS
Theorem-1 Let π, πΎ, πΏ, π, π, π, π β πΆ, π, π β π
, π
π(π½) > 0, π
π(πΏ) > 0, π
π(π) > 0,
π
π
π(πΎ) > 0, π
π(π) > 0, π
π (1 + 1βπΌ) > 0, π
π(π) > 0, πΌ < 1, π β π
, π β π
,
π
πΌβ²
1
π
π (π + πΏ πΉπ ) > 0, |arg π| < π1 π, π1 π2 > 0, π β€ π, |π| < πΌ β² , π½ β > 0, π = 1, β¦ , π;
2
π
Then
(π,πΌ)
π0+
{π‘ πβ1
β²
β
β²β²
β² (ππ , πΈπ )
πΌ β², π½β²
πΎ,πΏ,π
π,π
[ππ‘ βπ½ ]. πππβ² [dβ² t βΞ² ] π»π,π
[ππ‘ πΏ |
] . πΈπΌ,π½,π (ππ‘π )}
π
(π
πΉ
)
π
π, π
π
= π1 (π) π2 (π)
β
π
π π [πβ² ]π π₯ π+πβπ½ π (π½ β²β² )π π€ (1 + 1 β πΌ ) π€(πΏ)
π€(πΎ)[π(1 β πΌ)]πβπ½
βπ
β (π½ β²β² )π
(πΎ, π) (π β π½ β π, (π½ β²β² )π β πΏΖΊ, π)
ππ₯ π
π
].
|
2π3 [
β πΏπ β π½ β π, (π½ β²β² )π, π)
[π(1 β πΌ)]π (π½, πΌ)(πΏ, π) (1 + π +
1βπΌ
β²
(ππ , πΈπ )
ππ₯ πΏ
π,π
π»π,π
[
]
β¦β¦β¦..(2.1)
β²|
πΏ
[π(1βπΌ)]
(ππ, πΉπ )
Proof: The theorem -1 can be evaluated by using the definitions
(1.1),(1.10),(1.11),(1.12) and (1.16) then by interchange the order of integrations and
summations, evaluate the inner integral by making use of beta function formula, we
arrive at the desired result (2.1).
Theorem-2 Let π, πΎ, πΏ, π, π, π½, π1 , π2 > 0, π, π, πΎ, π, π½, π£, π, πΏ β πΆ , π
π(π) > 0, π
π(πΎ)
π
π
> 0, π
π(π½) > 0, π
π (1 + 1βπΌ) > 0, π, π β π
, πΌ < 1, π
π (π + πΏ πΉπ ) > 0, |arg π| <
1
π π, π
2 1
β€ π πππ |π| < πΌ
β²πΌ
β²
π
β
, π½ > 0, π = 1, β¦ , π
πππ min(π
π(π), π
π(π½), π
π(πΎ), π
π(πΏ), π
π(π), π
π(π£), π
π(π), π
π(π)) > 0
Hemlata Saxena and Rajendra Kumar Saxena
10
Then
(π,πΌ)
π0+
{π‘π½β1
= π1 (π)
β
β² (ππ , πΈπ )
πΌ β², π½β²
π,π,πΎ,π
π,π
πβ² β² βΞ²β²β²
[ππ‘ βπ½ ]. ππβ²
[d t
] π»π,π
[ππ‘ πΏ |
] . πΈπ,π½,π£,π,πΏ,π (ππ‘ π )}
(ππ, πΉπ )
π π π
ππ π₯ π+π½βπ½
β πβπ½ β²β² π
π
π€ (1 + 1 β πΌ) π€(π£)π€(πΏ)
[π(1 β πΌ)]π½βπ½βπβπ½β²β²π π€(π)π€(πΎ)
. π2 (π) (π β² )π
(π, π) (πΎ, π) (π½ β π½ β π β π½β²β²π β πΏβ²ΖΊ, π)
ππ₯ π
π
|
].
3π3 [
[π(1 β πΌ)]π (π½, πΌ)(πΏβ², π)(π, π) (1 + π½ +
β πΏ β² π β π½ β π β π½β²β²π, π)
1βπΌ
β²
(ππ , πΈπ )
ππ₯ πΏ
π,π
π»π,π
[[π(1βπΌ)]πΏβ² |
]
...(2.2)
(ππ, πΉπ )
Proof: The theorem -2 can be evaluated by using the definitions (1.1),(1.10) (1.11)
and (1.16) then by interchange the order of integrations and summations, evaluate the
inner integral by making use of beta function formula, we arrive at the desired result
(2.2).
SPECIAL CASES:
1. If we take πΏ = π = π = 1, π = π½,πΌ = π½, π½ = π and in H- function πΏ β² = πΏ in
theorem -1 then we at once arrive at the known result of [1,Theorem-2].
2. If we take πΏ = π = 1 in theorem -1 then we get the following particular case of
the solution (2.1)
Corollary-1
The following formula holds
(π,πΌ)
π0+
{π‘ πβ1
β
β² (ππ , πΈπ )
πΌ β², π½β²
πΎ,π
π,π
[ππ‘ βπ½ ]. π»π,π
[ππ‘ πΏ |
] . πΈπ,π (ππ‘π )}
(ππ, πΉπ )
π π π
= π1 (π)
β
π
)
ππ π₯ π+πβπ½ π π€(1+
1βπΌ
β
π€(πΎ)[π(1βπΌ)]πβπ½ π
(π β πΏπ β π½ β π, π)(πΎ, π)
ππ₯ π
π
|
]
2π2 [
[π(1 β πΌ)]π (π, π) (1 + π +
β πΏπ β π½ β π, π)
1βπΌ
β²
π,π
π»π,π
(ππ , πΈπ )
ππ₯ πΏ
[
|
]
β²
[π(1 β πΌ)]πΏ (ππ, πΉπ )
Certain Type of Pathway Fractional Integral Operator Associate via General Classβ¦
11
Where π, πΎ, π, π, π β πΆ, π, π β π
, π
π(π½) > 0, π
π(πΏ) > 0, π
π(π) > 0, π
π(πΎ) >
ππ
π
0, π
π(π) > 0, π
π (1 + 1βπΌ) > 0, π
π(π) > 0, πΌ < 1, π β π
, π β π
, π
π (π + πΏ πΉ ) >
0, |arg π| <
1
π π, π1 π2
2 1
> 0, π β€ π, |π| < πΌ
β²πΌ
β²
π
β
, π½ > 0, π = 1, β¦ , π;
3. If we take π = π£, π = π, πΏ = π = π = 1 and π β π½, π½ β π in H function
πΏ β² = πΏ in theorem-2 then we at once arrive at the known result of
[1, Theorem-1] .
4. If we take π = π£, π = π then we at once arrive at the theorem-1.
5. Making π½ β , πΏ β² β 0 and πΏ = π = π = 1, π = π½ in the result (2.1) and
π½ β , πΏ β² β 0, π = π£, π = π, πΏ = π = π = 1 in result (2.2) then we at once arrive
at the known result of Nair in[8].
6. If we take πβ² β 0 in theorem1 and theorem2 we get the result recently
established by H. Saxena[10]
7. π½ β² , πΏ β² πππ πβ² β 0 and πΏ = π = π = 1, π = π½ ππ (2.1) and π½ β , πΏ β² , πβ² β 0,
π = π π = π, πΏ = π = π = 1 ππ (2.2) then we at once arrive at the know
results of Nair in [8]
REFERENCES
[1]
Chaurasia V. B. L. and Singh J., 2012, βPathway Fractional Integral operator
Associated with certain special functionsβ, Global J. Sci. Front. Res., 12(9)
(Ver.1.0).
[2]
Fox, C., 1961, The G and H-functions as symmetrical Fourier kernels, Trans.
Amer. Math soc., 98, pp. 395-429.
[3]
Fraj, A, Salim, T., Sadek, S. and Ismail,J., 2013, β Generalized Mittag-Leffler
function associated with Weyl Fractional Calculus Operatorsβ, J. of
Mathematics Hindawi Publishing Corporation , ID 8217621,5 pages.
[4]
Khan, M.A and Ahmed, S., 2013, βOn some properties of the generalized
Mittag-Leffler functionβ, Springer plus, 2:337.
[5]
Mathai, A.M., 2005, βA pathway to matrix variate gamma and normal
densitiesβ, Linear Algebra and its Applications, 396, pp. 317-328.
[6]
Mathai, A.M. and Haubold, H.J., 2008, βOn generalized distribution and
pathwaysβ, Phy. Letters, 372, pp. 2109-2113.
[7]
Mathai, A.M. and Haubold, H.J., 2007, βPathway models, superstatisties,
trellis statistics and a generalized measure of entropyβ, physica, A 375, pp.
110-122.
12
Hemlata Saxena and Rajendra Kumar Saxena
[8]
Nair, Seema S, 2009, βPathway fractional integration operatorβ, Fract.
Cal.Appl. Anal., 12(3), 237-259.
[9]
Samko, S.G., Kilbas, A.A. and Marichev, O.I., 1993, βFractional integral and
Derivativesβ. Theory and Applications, Gordenand Breach, Switzerland.
[10] Saxena H., Saxena, R.K., 2015, βOn Certain type fractional integration of
special functions via Pathway Operatorβ, Global Journal Of Science Frontier
Research (F) Vol.(15) issue 8 Version I .
[11] Sharma, Manoj and Jain, Renu, 2009, βA note on a generalized M-series as a
special function of fractional calculusβ, Fract. Cal. Appl. Anal. 12(4), pp.
449-452.
[12] Srivastava, H.M. and Manocha, H.L., 1984, βA treatise on generating
functions,β John Wiley and Sons, Eillis Horwood, New York, Chichester.
[13] Srivastava, H.M., 1972, βA Contour integral involving Foxβs H-functionβ,
Indian J-Math, 14, pp. 1-6.
© Copyright 2026 Paperzz