Mathematical induction

9.4
ο‚§ In order to prove that a statement, π‘ƒπ‘˜ , is true for all
positive integers, you can use mathematical
induction
ο‚§ Show the statement is true for k = 1
ο‚§ Assume that π‘ƒπ‘˜ is true
ο‚§ Show that if π‘ƒπ‘˜ is true, then π‘ƒπ‘˜+1 must be true
ο‚§ By induction the statement is true for all positive
integers.
ο‚§ π‘ƒπ‘˜ : π‘†π‘˜ =
π‘˜ 2 (π‘˜+1)2
4
ο‚§ π‘ƒπ‘˜ : π‘†π‘˜ = 1 + 5 + 9 + β‹― + 4 π‘˜ βˆ’ 1 βˆ’ 3 + (4k βˆ’ 3)
ο‚§ π‘ƒπ‘˜ : π‘˜ + 3 < 5π‘˜ 2
ο‚§ π‘ƒπ‘˜ : 3π‘˜ > 2π‘˜ + 1
ο‚§ Use induction to prove the following formula:
ο‚§ 𝑆𝑛 = 1 + 3 + 5 + 7 + β‹― + 2𝑛 βˆ’ 1 = 𝑛2
ο‚§ Use induction to prove the following true
2
2
2
2
ο‚§ 𝑆𝑛 = 1 + 2 + 3 + β‹― + 𝑛 =
𝑛(𝑛+1)(2𝑛+1)
6
ο‚§ Pg 642 #5-17 odd