Probabilistic Inequalities Dan A. Simovici UMB Dan A. Simovici (UMB) Probabilistic Inequalities 1 / 14 1 Markov’s and Cebyshev’s Inequalities 2 Hoeffding’s Inequality Dan A. Simovici (UMB) Probabilistic Inequalities 2 / 14 Markov’s Inequality Theorem Let X be a non-negative r.v. such that E (X ) exists. For a > 0 we have P(X > a) 6 E (X ) . a Let Y be the random variable ( a Y = 0 if X > a, if X < a. Since Y 6 X , we have E (Y ) 6 E (X ). The expected value of Y can be also written as E (Y ) = aP(X > a), which yields the desired inequality. Dan A. Simovici (UMB) Probabilistic Inequalities 3 / 14 Chebyshev’s Inequality - I Theorem Let X be a random variable such that var(X ) exists. Then, for any positive number a we have P(|X − E (X )| > a) 6 var(X ) . a2 For Y = (X − E (X ))2 we have P(Y > 0) = 1 and E (Y ) = var(X ). By Markov inequality applied to Y and a2 we obtain P(|X − E (X )| > a) = P(Y > a2 ) 6 Dan A. Simovici (UMB) Probabilistic Inequalities var(X ) . a2 4 / 14 Chebyshev’s Inequality - II A generalization of Chebyshev’s Inequality can be obtained if the expectation of Z = (X − E (X ))k exists for k > 0. Namely, we have: P(|X − E (X )| > a) = P(Z > ak ) 6 E ((X − E (X ))k ) ak for every a > 0. Dan A. Simovici (UMB) Probabilistic Inequalities 5 / 14 Preliminary Results-I Lemma Let f : R≥0 −→ R be the function defined by f (x) = x2 + px − ln(1 − p + pe x ), 8 where p ∈ [0, 1]. We have f (x) > 0 for every x > 0. Proof: Note that f (0) = f 0 (0) = 0 because f 0 (x) = x ex +p−p . 4 1 − p + pe x x (1−p)pe 2 Since f 00 (x) = 14 − (1−p+pe x )2 , and 4ab 6 (a + b) , where a = 1 − p and b = pe x , we have f 00 (x) > 0. Therefore, x > 0 implies f 0 (x) > f 0 (0) = 0, which, in turn, implies f (x) > f (0) = 0. Dan A. Simovici (UMB) Probabilistic Inequalities 6 / 14 Preliminary Results-II Lemma Let X be a random variable such that E (X ) = 0 and a 6 X 6 b. We have E (e tX ) 6 e t 2 (b−a)2 8 . Proof: If x ∈ (a, b), then x = λa + (1 − λ)b, where λ = The convexity of the exponential implies b−x b−a ∈ [0, 1]. e tx 6 λe ta + (1 − λ)e tb for every x ∈ [a, b] and, therefore, b − E (X ) a b b − E (X ) ta tX e + 1− e ta − e tb . e tb = E (e ) 6 b−a b−a b−a b−a Dan A. Simovici (UMB) Probabilistic Inequalities 7 / 14 Preliminary Results-III Since E (X ) = 0 we have 0 6 x = t(b − a), we have: −a b−a 6 1. If we define p = −a b−a and E (e tX ) ≤ (1 − p)e at + pe bt = 1 − p + pe t(b−a) e at = 1 − p + pe t(b−a) e −pt(b−a) = e ln(1−p+pe t(b−a) )−pt(b−a) = e ln(1−p+pe x )−px ≤ e x2 8 (by previous Lemma) = e Dan A. Simovici (UMB) t 2 (b−a)2 8 , Probabilistic Inequalities 8 / 14 Hoeffding’s Inequality Theorem Let X1 , . . . , Xn be n independent random variables such that ai 6 Xi 6 bi for 1 6 i 6 n and let U be the random variable defined by: n X (Xi − E (Xi )). U= i =1 The following inequalities hold: P(U > ) 6 e P(U 6 −) 6 e Dan A. Simovici (UMB) −22 Pn (b −ai )2 i =1 i −22 Pn (b −ai )2 i =1 i Probabilistic Inequalities . 9 / 14 Proof of theorem Let Yi be the rv defined by Yi = Xi − E (Xi ) for 1 6 i 6 n. The independence of X1 , . . . , Xn implies that Y1 , . . . , Yn are independent. E (Yi ) = 0; ai 6 Xi 6 bi implies ai − E (Xi ) 6 Yi 6 bi − E (Xi ); t 2 (bi −ai )2 tYi 8 The second Lemma . Pnimplies E (e ) 6 e For the r.v. U = i =1 Yi we have E (U) = 0. Since P(U > ) = P(e tUn > e t ), by Markov’s inequality we have: P(e tU > e t ) 6 Dan A. Simovici (UMB) E (e tU ) . e t Probabilistic Inequalities 10 / 14 Proof of theorem (cont’d) P For the r.v. U = ni=1 Yi we have E (U) = 0. Since P(U > ) = P(e tUn > e t ), by Markov’s inequality we have: P(e tU > e t ) 6 E (e tU ) . e t Since P n n 2 Y Pn Y t2 n t 2 (bi −ai )2 i =1 (bi −ai ) 8 8 e E (e tYi ) ≤ E (e tU ) = E e t i =1 Yi = =e , i =1 i =1 it follows that P(U > ) = P(e Dan A. Simovici (UMB) tU t >e )6e Probabilistic Inequalities −t+ t2 Pn 2 i =1 (bi −ai ) 8 . (1) 11 / 14 Proof of theorem (cont’d) Similarly, P(U 6 −) = P(e −tU > e t ) 6 e −t+ t2 Pn 2 i =1 (bi −ai ) 8 Note that the exponent has a minimal value when t = we obtain the inequalities of the theorem: P(U > ) 6 e P(U 6 −) 6 e Dan A. Simovici (UMB) Pn 4a . 2 i =1 (bi −ai ) (2) . Thus, −22 Pn (b −ai )2 i =1 i −22 Pn (b −ai )2 i =1 i Probabilistic Inequalities . 12 / 14 A Corollary Corollary Let X1 , . . . , Xn be n independent random variables such that Xi ∈ [0, 1] for 1 6 i 6 n and let Zn be the random variable defined by: n 1X Xi . Zn = n i =1 The following inequalities hold: P(Zn − E (Zn ) > ) 6 e −2n 2 2 P(Zn − E (Zn ) 6 −) 6 e −2n . Dan A. Simovici (UMB) Probabilistic Inequalities 13 / 14 Proof of the corollary We have U= n X (Xi − E (Xi )) = n(Zn − E (Zn )). i =1 Consequently, by Hoeffding’s Inequality, taking a1 = · · · = an = 0 and b1 = · · · = bn = 1 we have P(Zn − E (Zn ) > ) = P(U > n) 6 e −2n2 2 n 2 = e −2n , The second inequality is obtained in a similar manner. Dan A. Simovici (UMB) Probabilistic Inequalities 14 / 14
© Copyright 2026 Paperzz