Macrosystem models of flows in communication-computing networks (GRID-technology) Yuri S. Popkov Institute for Systems Analysis of the Russian Academy of Sciences [email protected] GRID — distributed computer Real-time operation mode • • • • network as a computer response time is a random value which depends on the flows in network random delay random delay depends on flows in network A x 1 f1 ( x1 , x2 ) x 2 f 2 ( x1 , x2 ) x1[( n 1)h] x1[nh] hf1 ( x1[nh], x2[nh 1 ]) x2[( n 1)h] x2[nh] hf2 ( x1[nh 2 ], x2[nh]) B Transportation flows in Moscow traffic system (middle of the day) T = 25 min Change of transportation flows in Moscow traffic system (morning) T = 32 min Change of transportation flows in Moscow traffic system (evening) T = 29 min GRID — Stochastic network — Dynamic system History Transportation networks (passanger, cargo) Pipe-line networks (oil, gas) Computer networks (Internet, Intranet) Energy networks State GRID Distribution of Information flows Dynamic stochastic network Macrosystem theory Stochastic factors Inertia GRID states • Spatial distribution of information and computing resources relaxation time r • Distribution of correspondence flows relaxation time X (t ) Y (t ) f r f Problems for study A. B. Formation of quasi-stationary states of corresponding flows Spatial-temporary evolution of network: interaction between “slow” and “fast” processes in network GRID phenomenology Network Flows Correspondences I (t ) Assignment Macrostate Y ( t ) [ yij ( t )] - correspondence flows Model of quasi-stationary states Probabilistic characteristics Time interval t t t t Information and computing resources Number of information portions X (t ) Correspondence flows Number of information portions per time unit Y (t ) Prior probabilities B( X , t ) A( X , t ) t Flows Y (t ) Volumes G( t ) Y ( t ) t Generalized Boltzmann information entropy H B (G , t , t ) gij ( t ) ln gij e bij ( X , t ) Model of quasi-stationary states Probabilistic characteristics Throughputs Eij1 , Eij2 ,, Eijs Feasible correspondence flows Eijr ( t ) C ij ( t ) m max E ij 1 m s Volume of correspondences 0 gij (t ) Cij Generalized Fermi-Dirac information entropy H F (G , t , t ) gij ln gij (C ij ( t ) gij ( t )) ln( C ij ( t ) gij ( t )), ~ e bij ( X , t ) ~ bij ( X , t ) bij ( X , t ) 1 bij ( X , t ) Model of quasi-stationary states Feasible sets Cost constraints ij i — transmission cost of an information portion for ( i j ) – correspondence — transmission cost of an information portion per time unit for i–th resource gij (t ) ij X i (t )i t , j 1, n j Balance constraints - demands gij ( t ) ij q j ( t ) t Q j ( t ), j 1, m i - throughput constraints 1, route of ( i j ) correspondence belongs to arc k 0, otherwise kij gij (t ) kij W k t , где W – throughput of k-th arc i , jM k General model H [G , t , t , X ( t )] max G D( X , t , t ) Classification of the model of quasi-stationary states (MQSS) I. MQSS for constant capacity of correspondences H F (Y , X ( t ), C ) max, Y D( X , t ) D: y ij ij i X i ( t ) i 1, n j yij q j j 1, m i yij kij W k k 1, r ij II. MQSS for variable capacity of correspondences H F (Y , t , X ( t ), C ( t )) max, Y D( X , t ) D: y ij ij i X i ( t ) i 1, n j yij q j j 1, m i III. MQSS for small network loading H B (Y , X ( t )) max, Y D( X , t ) D: y ij ij i X i ( t ) i 1, n j yij q j i j 1, m Illustration of adequacy of the MQSS (transport network) Dynamic models of stochastic network Regional structure of network X i (t ) — volume of computing resources in i-th region (slow variables) yij (t ) — information flows between regions i and j (fast variables) 0 X (t ) M (t ) 0 Y (t ) C (t ) Change factors of information and computing resources • ageing (depends on X(t)) • renewal (external influence U(t)) • information flows (Y(t)) Change factors of information flows • information and computing resources (X(t)) • demand (Q(t)) • information flows (Y(t)) or 0 Y ( t ) C ( t ) Dynamic model dX ~ dY F [ X ( t ), U ( t ),Y ( t )]; Ф[Y ( t ), X ( t ), Q( t )] dt dt А. Resource dynamic - positiveness ~ Fi ( X 1 , , X i 1 ,0, X i 1 , , X n | U , Y ) 0 i 1, n ~ Fi ( X | U , Y ) ( X i ) Fi ( X , U , Y ), where ( X ) 0, F ( ) dX X F ( X , U ,Y ) dt - boundedness Fi ( X | U , Y ) 0 для X i i { X : 0 X j ( t ) M j ( t ); X i ( t ) M i ( t ), j 1, n; j i } Example: Fi ( X | U ,Y ) bi (U ,Y ) X i si (U ,Y ) i 1, n Model types 1. Ageing with constant rate Fi ( X ,Y ) bi X i P iY i bi const 2. Ageing and renewal with constant rate ~ Fi ( X ,Y ) bi biU X i P iY i ~ bi , bi const 3. Renewal with constant rate ~ Fi ( X ,U ) biU X i P iY i ~ bi const P – (m x n) matrix; Pi – i –th row of matrix P; Yi – i –th column of matrix Y; B. Quasi-stationary states of the information flows distribution max H (Y , X , t ) Y D( x ) General dynamic model of stochastic network dX X ( b(U ,Y * ( X , t )) X s(U ,Y * ( X , t ))) dt Y * ( X , t ) arg max( H (Y , X , t ) | Y D( x )) Positive dynamic system with entropy operator Conclusion GRID-technology GRID as a system Hardware, software, technical tools and etc. Information and computing resources, information flows, distributed on-line computing Interestingly: new class of dynamic systems Why it is necessary to study System properties of GRID? Usefully: active and strategic control, prediction Tools Macrosystem modelling Quasi-stationary states Resources evolution Entropy maximization models Models of dynamic systems with entropy operator Numerical methods, sensitivity, smothness Existing, boundedness, stability
© Copyright 2026 Paperzz