ECIV 301 Programming & Graphics Numerical Methods for Engineers REVIEW III Topics • Regression Analysis – Linear Regression – Linearized Regression – Polynomial Regression • Numerical Integration – Newton Cotes – Trapezoidal Rule – Simpson Rules – Gaussian Quadrature Topics • Numerical Differentiation – Finite Difference Forms • ODE – Initial Value Problems – Runge Kutta Methods • ODE – Boundary Value Problems – Finite Difference Method Regression Often we are faced with the problem… x y 0.924 0.928 0.93283 0.93875 0.94 -0.00388 -0.00743 0.00569 0.00188 0.01278 0.015 0.01 0.005 0 -0.005 -0.01 0.92 0.925 0.93 0.935 0.94 what value of y corresponds to x=0.935? 0.945 Curve Fitting Question 2: Is it possible to find a simple and convenient formula that represents data approximately ? 0.015 0.01 e.g. Best Fit ? 0.005 0 -0.005 Approximation -0.01 0.92 0.925 0.93 0.935 0.94 0.945 Stress Experimental Measurements Strain BEST FIT CRITERIA l ( x ) a0 a1 x y Stress Error at each Point ei yi l ( xi ) yi a0 a1 xi Strain Best Fit => Minimize Error Best Strategy e y n 2 n i i 1 y i i 1 i ,measured i 1 n yi ,mod el 2 a0 a1 xi 2 Best Fit => Minimize Error n n e y a i 1 2 i i 1 i 0 a1 xi 2 Objective: What are the values of ao and a1 n that minimize e i 1 2 i ? Least Square Approximation In our case n n e y a i 1 2 i i 1 i 0 a1 xi Sr a0 , a1 2 Since xi and yi are known from given data Sr a0 , a1 2 yi a0 a1 xi 0 a0 i 1 n Sr a0 , a1 2 yi a0 a1 xi xi 0 a1 i 1 n Least Square Approximation n n Sr a0 , a1 n yi a0 a1 xi a0 i 1 i 1 i 1 Sr a0 , a1 2 yi xi a0 xi a1 xi a1 i 1 i 1 i 1 n n n Least Square Approximation na0 a1 xi yi i 1 i 1 n n 2 a0 xi a1 xi yi xi i 1 i 1 i 1 n n n 2 Eqtns 2 Unknowns Least Square Approximation a1 n n n i 1 i 1 i 1 n xi yi xi yi n x xi i 1 i 1 n n 2 2 i n x a0 y a1 x x i 1 i n n y y i 1 n i Example 7 6 y = 0.8393x + 0.0714 5 4 Series1 Linear (Series1) 3 2 1 0 0 2 4 6 8 Quantification of Error 7 6 5 Average 4 Exper 1 n 3 2 y 1 y i i 1 n 24 3.42 7 0 0 1 2 3 4 5 6 7 8 Quantification of Error 7 n St yi y 6 2 i 1 5 Average 4 Exper 1 3 2 1 0 0 1 2 3 4 5 6 7 8 Quantification of Error 7 n St yi y 6 2 i 1 5 Average 4 Exper 1 3 St sy n 1 2 1 0 0 1 2 3 4 5 6 7 8 Quantification of Error 7 St sy n 1 6 5 Average 4 Exper 1 3 2 1 n St yi y 2 0 0 1 2 3 4 5 6 7 8 i 1 Standard Deviation Shows Spread Around mean Value Quantification of Error n n Sr ei yi a0 a1 xi 2 i 1 7 2 i 1 6 y = 0.8393x + 0.0714 5 4 Exper 1 Linear (Exper 1) 3 2 1 0 0 2 4 6 8 Quantification of Error n n Sr ei yi a0 a1 xi 2 i 1 2 i 1 7 “Standard Deviation” for Linear Regression 6 y = 0.8393x + 0.0714 5 4 Exper 1 Linear (Exper 1) 3 sy / x 2 1 0 0 2 4 6 8 Sr n2 Quantification of Error 7 n St yi y 2 i 1 6 5 Average 4 Exper 1 3 2 1 7 0 6 0 1 2 3 4 5 6 7 8 y = 0.8393x + 0.0714 5 4 Exper 1 Linear (Exper 1) 3 n 2 Sr yi a0 a1 xi Better Representation i 1 1 Less Spread 0 0 2 4 6 8 2 Quantification of Error 7 7 6 6 y = 0.8393x + 0.0714 5 5 Average 4 4 Exper 1 3 n St yi y 2 1 2 i 1 0 0 1 2 3 4 5 3 2 n Sr yi a0 a1 xi 1 6 7 i 1 8 0 0 St S r r St 2 2 Coefficient of Determination 2 r r 2 St S r St Correlation Coefficient 4 6 8 Linearized Regression bx y a1e A Bx 1 ln y ln a1eb1x A ln a1 ln a1 b1 x B b1 The Exponential Equation Linearized Regression y a2 x b2 A Bx log 10 y log 10 a2 x A log 10 a2 log 10 a2 b2 x B b2 b2 The Power Equation Linearized Regression x y a3 b3 x 1 b3 1 1 y a3 x a3 A Bx 1 A a3 b3 B a3 The Saturation-Growth-Rate Equation Polynomial Regression y a0 a1 x a2 x e 2 A Parabola is Preferable Polynomial Regression Minimize ei n 2 i 1 n y i a 0 a 1x i a 2 x i 1 Sr a 0 , a1 , a 2 2 2 Polynomial Regression n Sr a 0 , a1 , a 2 2 2 y i a 0 a1x i a 2 x i 0 i 1 a 0 n Sr a 0 , a1 , a 2 2 2 yi a 0 a1x i a 2 x i x i 0 i 1 a1 n Sr a 0 , a1 , a 2 2 2 2 yi a 0 a1x i a 2 x i x i 0 i 1 a 2 Polynomial Regression (n )a 0 x i a1 x a 2 yi x i a 0 x 2 i 2 i a x a 1 3 i x a x a x a 2 i 0 3 i 1 4 i 2 x i yi 2 x yi 3 Eqtns 3 Unknowns 2 i Polynomial Regression x a y x x a x y x x a x y n x i x i2 x i 2 i 3 i 2 i 3 i 4 i 0 i 1 i i 2 i i 2 Use any of the Methods we Learned Polynomial Regression With a0, a1, a2 known the Total Error Sr a 0 , a1 , a 2 yi a 0 a1x i a 2 x n i 1 Standard Error Coefficient of Determination sy x Sr n 3 S t Sr r St 2 2 2 Polynomial Regression For Polynomial of Order m Sr a 0 , a1 ,a m yi a 0 a1x i a m x n i 1 Standard Error Coefficient of Determination sy x Sr n m 1 S t Sr r St 2 m 2 Numerical Integration & Differentiation Motivation y f xi x f xi x x Motivation y f xi x f xi x x Motivation dy f xi x f xi lim dx x0 x Motivation b I f x dx a AREA BETWEEN a AND b Motivation d v (t ) y (t ) dt Motivation b y t v t dx a Motivation Motivation Given Calculate Derivative Motivation Given Calculate Think as Engineers! In Summary INTERPOLATE In Summary Newton-Cotes Formulas Replace a complicated function or tabulated data with an approximating function that is easy to integrate b b a a I f x dx f n x dx f n x ao a1 x an 1 x n 1 an x n In Summary Also by piecewise approximation b I f x dx a b xi 1 f x dx xi a xi n Closed/Open Forms CLOSED OPEN Trapezoidal Rule Linear Interpolation h Error O 12 3 Trapezoidal Rule Multiple Application Trapezoidal Rule Multiple Application Trapezoidal Rule Multiple Application x a=xo x1 x2 f(x) f(x0) f(x1) f(x2) … b=xn f(xn-1) f(xn) n 2 I b a xn-1 f x0 2 f xi f xn i 1 2n Simpson’s 1/3 Rule Quadratic Interpolation h Error O 90 5 f 2 ( x ) a0 a1 x a2 x 2 Simpson’s 3/8 Rule 3h Error O 80 5 Cubic Interpolation f 2 ( x ) a0 a1 x a2 x a3 x 2 3 Gauss Quadrature I w1 f x1 w2 f x2 x1 x2 General Case Gauss Method calculates pairs of wi, xi for the Integration limits -1,1 I f ( x )dx w1 f x1 w2 f x2 1 1 For Other Integration Limits Use Transformation Gauss Quadrature b I f ( x )dx a x a0 a1 xG For xg=-1, x=a a a0 a1 For xg=1, x=b b a0 a1 ba a0 2 ba a1 2 Gauss Quadrature b I f ( x )dx a b a b a xG x 2 b a dx dx 2 G ba I f ( x )dx f ( x )dx 2 1 a b 1 Gauss Quadrature ba 1 I f ( x )dx f ( x )dx 2 1 a b ba n I wi f xi 2 1 Gauss Quadrature Points Weighting Factors wi Function Arguments Error 2 W0=1.0 W1=1.0 X0=-0.577350269 X1= 0.577350269 F(4)(x) 3 W0=0.5555556 X0=-0.77459669 W1=0.8888888 X1=0.0 W2=0.5555556 X2=0.77459669 F(6)(x) Gaussian Points Points Weighting Factors wi Function Arguments Error 4 W0=0.3478548 X0=-0.861136312 F(8)(x) W1=0.6521452 X1=-339981044 W2=0.6521452 X2=- 339981044 W3=0.3478548 X3=0.861136312 Gaussian Quadrature Not a good method if function is not available FORWARD FINITE DIFFERENCE Fig 23.1 BACKWARD FINITE DIFFERENCE Fig 23.2 CENTERED FINITE DIFFERENCE Fig 23.3 Data with Errors ODE IVP, BVP Pendulum d sin m 2 mg 0 dt l 2 d sin g 0 2 dt l 2 W=mg Ordinary Differential Equation ODEs d sin g 0 2 dt l 2 Non Linear Linearization Assume is small sin d g 0 2 dt l 2 ODEs d g 0 2 dt l 2 Second Order Systems of ODEs d y dt dy g 0 dt l ODE y 0.5x 4 4 x3 10 x 2 8.5x 1 dy 3 2 2 x 12 x 20 x 8.5 dx ODE - OBJECTIVES dy 3 2 2 x 12 x 20 x 8.5 dx y 2 x 12 x 20 x 8.5 dx 3 2 y 0.5x 4 x 10 x 8.5x C 4 3 2 y 0.5x 4 x 10 x 8.5x 1 4 3 2 Undetermined ODE- Objectives Initial Conditions y0 1 y 0.5x 4 x 10 x 8.5x 1 4 3 2 ODE-Objectives Given dy f x , y dx Calculate yx f 0, y known I .C. Runge-Kutta Methods New Value = Old Value + Slope X Step Size yi 1 yi h Runge Kutta Methods yi 1 yi h Definition of yields different Runge-Kutta Methods Euler’s Method dy f x , y dx yi 1 yi h Let f xi , yi Sources of Error Roundoff: Limited number of significant digits Truncation: Caused by discretization • Local Truncation • Propagated Truncation Sources of Error Propagated Local Euler’s Method Heun’s Method 2-Steps Predictor Corrector Heun’s Method Predictor-Corrector Solution in 2 steps Let f xi , yi Predict y 0 i 1 yi h Heun’s Method Corrector Estimate 0 i 1 f xi , y Let f xi , yi f xi , y 2 Correct yi 1 yi h 0 i 1 Error in Heun’s Method The Mid-Point Method yi 1 yi h Remember: Definition of yields different Runge-Kutta Methods Mid-Point Method 2-Steps Predictor Corrector Mid-Point Method Let Predictor f xi , yi Predict y 1 i 2 h yi 2 Mid-Point Method Estimate f x 1 , y 1 i i 2 2 Let f x 1 , y 1 i i 2 2 Correct yi 1 yi h Corrector Runge Kutta – 2nd Order dy f x , y dx yi 1 yi h k1 f xi , yi f 0, y known I .C. 2 1 k1 k 2 3 3 3 3 k 2 f xi h , yi k1h 4 4 Runge Kutta – 3rd Order dy f x , y dx yi 1 yi h k1 f xi , yi f 0, y known I .C. 1 k1 4k 2 k3 6 1 1 k 2 f xi h , yi k1h 2 2 k3 f xi h, yi k1h 2k2 h Runge Kutta – 4th Order dy f x , y dx yi 1 yi h k1 f xi , yi f 0, y known I .C. 1 k1 2k 2 2k3 k 4 6 1 1 k 2 f xi h , yi k1h 2 2 1 1 k f x h , y k h k3 f xi h , yi k 2 h 4 i i 3 2 2 Boundary Value Problems CENTERED FINITE DIFFERENCE Fig 23.3 Boundary Value Problems xo x1 x2 x3 ... xn-1 xn Boundary Value Problems xo x1 x2 x3 ... xn-1 xn y2 2 y1 y0 h f ( x1 , y1 ) 2 Boundary Value Problems xo x1 x2 x3 ... xn-1 xn y3 2 y2 y1 h f ( x2 , y2 ) 2 Boundary Value Problems xo x1 x2 x3 ... xn-1 xn y4 2 y3 y2 h f ( x3 , y3 ) 2 Boundary Value Problems xo x1 x2 x3 ... xn-1 xn yn 2 yn 1 yn 2 h f ( xn 1 , yn 1 ) 2 Boundary Value Problems Collect Equations: y2 2 y1 y0 h f ( x1 , y1 ) 2 y3 2 y2 y1 h f ( x2 , y2 ) 2 yn 2 yn 1 yn 2 h f ( xn 1 , yn 1 ) 2 BOUNDARY CONDITIONS Example x1 x2 x3 x4 T5 T0 2 d T cTa T 0 2 dx Example x1 x2 x3 x4 T0 T5 T2 2T1 T0 cTa T1 0 2 h T2 T1 2 ch T0 ch Ta 2 2 Example x1 x2 x3 x4 T0 T5 T3 2T2 T1 cTa T2 0 2 h T3 T2 2 ch T1 ch Ta 2 2 Example x1 x2 x3 x4 T0 T5 T4 2T3 T2 cTa T3 0 2 h T4 T3 2 ch T2 ch Ta 2 2 Example x1 x2 x3 x4 T0 T5 T5 2T4 T3 cTa T4 0 2 h T4 T3 2 ch T2 ch Ta 2 2 Example x1 x2 x3 x4 T0 2 ch 2 1 0 0 T5 1 2 ch 0 2 1 1 2 ch 0 1 T1 ch 2Ta T0 T 2 0 2 ch Ta 2 1 T3 ch Ta 2 2 ch T4 ch 2Ta T5 0 2
© Copyright 2026 Paperzz