Gravity 引力 Model of solar system 太阳系模型 Ptolemy’s geocentric model Kepler's Platonic solid model of the Solar system Kepler‘s laws of planetary motion 开普勒定律 1. The Law of Orbits: All planets move in elliptical orbits, with the sun at one focus. p r 1 e cos p a(1 e 2 ) p b 1 e2 2. The Law of Areas: A line that connects a planet to the sun sweeps out equal areas in equal times. Area velocity is constant d dA L mrv mr 2m C dt dt 2 dA ab dt T 3. The Law of Periods: The square of the period of any planet is proportional to the cube of the semimajor axis of its orbit. From Newton’s law, we have Newton‘s laws of universal gravitation 万有引力定律 If the orbit is a circle, we have Cavendish experiment Gravitational force of a spherical shell 球壳的引力 Geometric relation Outside spherical shell Inside spherical shell Gravity force inside a ball with uniform density Force along the tunnel Fx Gm' m x Gm' m r x 3 3 R r R d 2x Gm' m m 2 x 3 dt R Gm' R3 Same as simple harmonic oscillator T 2 Gm' 2R 3 R d 2x 2 x0 2 dt Gm' R Gravitational potential Gravity potential on earth’s surface For neutron star Compare to fusion energy Compare to energy value of gasoline E 4 107 J / kg m Orbiting speed 第一宇宙速度 escape speed of earth 第二宇宙速度 escape speed of sun 第三宇宙速度 1 2 Mm 1 2GM s GM s v 12.3 mv3 G mv 2 Rs Rs 2 R 2 When escape speed is the grater than speed of light, we get blackhole 引力场可以被局部消除 equivalence principle 等效原理 Metric 度规 3D Euclidean Minkowski General relativity 引力几何化 hdv Gm' m dz 2 ( R z) m hv / c 2 GR result Two body problem define Equation of motion Effective potential U eff (r ) L k 2r 2 r Solve for orbit 1 L L d d 2 2 2 L 2k L r k L k r 2 E 2 E r L r L r L 1 1 a x 2 2 dx 1 1 ( x / a) 2 d ( x / a) arccos( x / a) cos( 0 ) L e 1 2 E k 2 L2 p k r L 1 2 E k p 1 e cos( 0 ) Thus we obtain Kepler’s first law from gravity law. p a(1 e 2 ) L2 1 1 k r 2 p / r 1 e dA ab dt T dA L dt 2 T 2 ab L 2 b 2 ap ab 1 2a 3 / 2 2a 3 / 2 k G(m'm) kp Thus we obtain Kepler’s third law. Alternative method (r12 r22 ) E k (r1 r2 ) 1 k 1 k E mv12 mv22 2 r1 2 r2 E v1r1 v2 r2 E k 1 k mv 2 2a 2 a L mbv v2 k ma L2 b a mk 2 k 2a v v2 v1 Time evolution: Kepler equation We want to solve for ab A(t ) t T Need to find A (t ) for given A b1 2 1 a E ac sin E a2 2 a cos E c r cos c E e sin E p cos 1 e cos 2 t T cos E e cos 1 e cos 1 e E 1 tan 2 e(1 tan 2 ) 1 tan 2 2 2 2 2 1 e E 1 e 1 tan 2 1 tan 2 e(1 tan 2 ) 1 tan 2 2 2 2 1 e 2 1 tan 2 tan E 1 e tan 2 1 e 2 (1) Alternative method 1 2 1 p2 ab A(t ) r d ' d ' t 2 0 0 2 2 (1 e cos ' ) T dx 2 a b x arctan tan a b cos x a 2 b 2 ab 2 Change variables t tan( x / 2) Take derivative with respect to a dx 2a a b x arctan tan (a b cos x) 2 (a 2 b 2 )3 / 2 ab 2 2b x tan (a b)( a b) 2 2 a b x 1 tan 2 ab 2 Take a=1, b=e, and plug in the integral limit 0 d ' 2 1 e arctan tan 2 2 3/ 2 (1 e cos ' ) (1 e ) 1 e 2 2e 1 e tan (1 e 2 ) 3 / 2 1 e 2 1 e x 1 tan 2 1 e 2 0 d ' 2 1 e arctan tan (1 e cos ' ) 2 (1 e 2 ) 3 / 2 1 e 2 Define E 2 arctan 2e 1 e tan (1 e 2 ) 3 / 2 1 e 2 1 e x 1 tan 2 1 e 1 e tan 1 e 2 1 p2 p2 1 2e tan( E / 2) d ' E 2 0 (1 e cos ' ) 2 2 (1 e 2 )3 / 2 1 tan 2 ( E / 2) ab ab ( E e sin E ) t 2 T E e sin E 2 t T 2 Scattering 散射 1 e2 1 k k 2 L 2 E v0 b L e 1 2 E k 2 Gravitational field 引力场 For spherical shell, we have Inside the shell outside the shell g f 4r 2 0 g f 4r 2 4GMer gf 0 GM g f 2 er r Proof of Gauss’s Law We only have to prove it for a mass point. Gauss’s divergence theorem: If F is a continuously differentiable vector field defined on a neighborhood of V, then we have Gm g 3 ( xi yj zk ) r Gravity field is x 1 3x 2 3 3 5 x r r r r x2 y2 z 2 3 3( x 2 y 2 z 2 ) 0 g Gm 3 5 r r An arbitrary surface can be replaced by a spherical surface For spherical surface 2 Gm g dS 4 r Gm 2 r Gravity field strength and potential generated by m is z r cos we can expand by to small parameter r/a Taylor expansion formula (1 x) a 1 ax a (a 1) 2 x 2 2 Gm r r V (r ) 1 2 cos a a a 1/ 2 2 2 2 Gm r 1r 3 r r 1 cos 2 cos a a 2 a 8 a a 2 Gm 1r r 2 1 cos (3 cos 1) a 2a a Gm V1 2 z a Gm g 2 k a This is a uniform field strength Gradient in spherical coordinate Tidal force of moon and sun
© Copyright 2026 Paperzz