Bounding the set of finite dimensional correlations Miguel Navascués1 and Tamás Vértesi2 1Institute for Quantum Optics and Quantum Information (IQOQI), Vienna. 2Institute for Nuclear Research, Hungarian Academy of Sciences. MN and T. Vértesi, Phys. Rev. Lett. 115, 020501 (2015) . MN, A. Feix, M. Araújo and T. Vértesi, Phys. Rev. A 92, 042117 (2015). Optimization theory max ∈ Variational methods max ∈ Variational methods max ∈ ansatz Variational methods max ∈ ansatz Variational methods max ∈ ansatz ‐usually, pretty straightforward E.g.: Newton's method ‐usually, universal ‐sometimes arise as intuitions gathered via numerical experiments. E.g.: MPS. Relaxations max ∈ Relaxations max ∈ Relaxations max ∈ Relaxations max ∈ ‐Depend on the structure of the problem ‐"Aha!" idea E.g.: the NPA hierarchy MN, S. Pironio and A. Acín, Phys. Rev. Lett. 98, 010401 (2007). MN, S. Pironio and A. Acín, New J. Phys. 10, 073013 (2008). Alice Bob x y a b Alice Bob x y a b Are the ouputs of this experiment compatible with quantum mechanics? "Easy" Variational methods "Difficult" Mathematical coincidences "Difficult" "Easy" Mathematical coincidences Variational methods relaxation? is not quantum The problem resists brute force approach!! is not quantum The problem resists brute force approach!! What is a Hilbert space? visible averages invisible averages Moment matrix ... 1 , | , ′| ′ ′, | ′, , Moment matrix ... 1 , | , ′| ′ ′, | ′, Moment matrix ... 1 Hilbert space , | , ′| ′ ⋮ ′, | ′, , | , admits a positive semidefinite moment matrix for the operators , , Q1 1st‐order moment matrix , | , admits a positive semidefinite moment matrix for the operators 2nd‐order , , , , moment , Q2 Q3 3rd‐order moment matrix Q matrix MN, S. Pironio and A. Acín, Phys. Rev. Lett. 98, 010401 (2007). MN, S. Pironio and A. Acín, New J. Phys. 10, 073013 (2008). , | , admits a positive semidefinite moment matrix for the operators , , , , , , , , etc. NPA Variational methods max , , Bounding the set of finite dimensional quantum correlations MN and T. Vértesi, Phys. Rev. Lett. 115, 020501 (2015) . Alice Bob x y dimension dimension , a , , | ∈ ⨂ | , b "Easy" Variational methods "Difficult" Mathematical coincidences relaxation? "Easy" Variational methods "Difficult" Mathematical coincidences Quantum communication complexity Alice Bob H. Buhrman, R. Cleve, S. Massar, and R. de Wolf, Rev. Mod. Phys. 82, 665 (2010). Quantum communication complexity Alice Bob H. Buhrman, R. Cleve, S. Massar, and R. de Wolf, Rev. Mod. Phys. 82, 665 (2010). Quantum communication complexity Alice Bob H. Buhrman, R. Cleve, S. Massar, and R. de Wolf, Rev. Mod. Phys. 82, 665 (2010). Quantum communication complexity Dimension D Alice Bob H. Buhrman, R. Cleve, S. Massar, and R. de Wolf, Rev. Mod. Phys. 82, 665 (2010). Quantum communication complexity Dimension D Alice Bob Maximum probability that H. Buhrman, R. Cleve, S. Massar, and R. de Wolf, Rev. Mod. Phys. 82, 665 (2010). Quantum communication complexity Dimension D Alice Variational methods Bob Relaxation? H. Buhrman, R. Cleve, S. Massar, and R. de Wolf, Rev. Mod. Phys. 82, 665 (2010). max 1 max 2 ∗ s.t. , ∈ s.t. ∈ , ⨂ , , 0, ⨂ , , , , , , , , 1 , , ∈B 1 ,projectors, 1, dim Brute force theoretically posible, but impractical What is a D-dimensional Hilbert space? MN and T. Vértesi, Phys. Rev. Lett. 115, 020501 (2015) . D=# of entries D=# of columns Moment matrix ... 1 , | , ′| ′ ′, | ′, , How to incorporate dimension constraints? Matrix polynomial identities Matrix polynomial identities E.g.: 1 Matrix polynomial identities E.g.: 1 2 Matrix polynomial identities E.g.: 1 2 Central polynomial (commutes with everything) Standard Identity matrices C. Procesi. Rings with polynomial identities. Marcel Dekker, New York, 1973 Moment matrix ... 1 , | , ′| ′ ′, | ′, Moment matrix ... 1 , | , ′| ′ ∈ 0, ∀ , , … , ′, | ′, , 0 , , , 0 Moment matrix ... 1 , | , ′| ′ ′, | ′, Moment matrices of D‐level quantum systems are subject to non‐trivial linear constraints!!! D-dimensional Hilbert space D-dimensional Hilbert space ? Toy problem max 1 , s.t. , , 1 Temporal quantum correlations projective measurement 1,‐1 C. Budroni, T. Moroder, M. Kleinmann, O. Gühne, Phys. Rev. Lett. 111, 020403 (2013) Temporal quantum correlations 00 1 1 ‐1 C. Budroni, T. Moroder, M. Kleinmann, O. Gühne, Phys. Rev. Lett. 111, 020403 (2013) Toy problem ∗ max | 1 , , , 1, s.t. 1 | Toy problem ∗ max | 1 , , | , 1, s.t. 1 In the dimension‐free case, this kind of problems can be solved with a single SDP S. Pironio, M. Navascués and A. Acín, SIAM J. Optim. 20, 5, 2157‐2180 (2010). C. Budroni, T. Moroder, M. Kleinmann, O. Gühne, Phys. Rev. Lett. 111, 020403 (2013) ∗ Temporal quantum correlations projective measurement two‐dimensional system 1,‐1 C. Budroni, T. Moroder, M. Kleinmann, O. Gühne, Phys. Rev. Lett. 111, 020403 (2013) Toy problem ∗ max | 1 , , | , 1, s.t. 1, | ∈ , , ∈ Solving the toy problem (I): divide the problem into classes 1 1 1 2 Trivial 1 2 | 1 | 1 A random instance can be generated easily 0 1 1 non‐trivial Solving the toy problem (I): divide the problem into classes 729 classes Each class labeled by a vector ∈ 0,1,2 Classed toy problem ∗ max | 1 , , | , 1, s.t. 1, | ∈ , , 1 1 , ∈ , max 1 , , , s.t. Γ , Γ Γ∈ 1 0, , Γ Solving the toy problem (II): Identify max 1 , , , s.t. Γ , Γ Γ∈ 1 0, , , Γ High level description 1 High level description 1 Generate random dichotomic operators , ∈B (with app. ranks) and vector ∈ High level description 1 Generate random dichotomic operators , ∈B (with app. ranks) and vector ∈ Build moment matrix Γ Γ , = Γ , 1, = , , High level description 1 Generate random dichotomic operators , ∈B (with app. ranks) and vector ∈ Build moment matrix Γ Γ , = Γ , 1, , = 1 , Repeat until the is moment matrix Γ a linear combination of Γ ,…,Γ High level description 1 Generate random dichotomic operators , ∈B (with app. ranks) and vector ∈ Build moment matrix Γ Γ , = Γ , 1, , = , At that point, any feasible moment matrix Γ must be a linear combination of Γ ,…,Γ Γ 1 ,…,Γ ) SDP relaxation max 1 , , , s.t. Γ , Γ Γ Γ 1 0, Γ SDP relaxation max 1 , , , s.t. Γ , Γ Problems with SDP solvers Γ Γ 1 0, Lack of strict feasibility, i.e., there are no Γ 0 Γ | |≫1 Implementation tips 1 Why? Isometry to the support of Γ Strict positivity Implementation tips 2 Use (modified) Gram‐Schmidt as you generate the matrices Γ , Γ … Sequence of orthogonal matrices Γ , Γ … at s=N+1, Γ Γ 0, up to computer precision Γ Γ Γ Γ SDP relaxation , , min Γ , 1, s.t. Γ , Γ Γ , , , , , , , Γ , , min 1, s.t. Γ , Γ 0, Γ Γ 0, Γ Free dimensionality ∗ Second relaxation, D=2 Generalization NPO problem with dimension constraints ∗ , , s.t. MN, A. Feix, M. Araújo and T. Vértesi, Phys. Rev. A 92, 042117 (2015). ∗ min 1, s.t. 0, 0, / ∑ ∗ , ∗ ∈ . ∗ min 1, s.t. 0, 0, / ∑ , ∈ . Archimedean condition , , → ∗ ∗ , Related hierarchies SDP hierarchy for quantum non‐locality under dimension constraints Alice x Bob , , max x , | , , , , dimension dimension , a , , | ∈ ⨂ | , y s.t. ∈ , ⨂ , ∈B , 1 ,projectors, 1, dim s.t. ∈ , ⨂ , , ∈B 1 ,projectors, 1, dim rank , , rank High level description 1 , Generate random projectors , , ∈B (with app. ranks) and vector ∈ Repeat until the is moment matrix Γ a linear combination of Γ ,…,Γ Build moment matrix Γ Γ , = Γ , ⨂ = 1, , ⨂ 1 , , SDP hierarchy s.t. Γ , Γ 1 0, Γ Γ Convergence is guaranteed MN, A. Feix, M. Araújo and T. Vértesi, Phys. Rev. A 92, 042117 (2015). NPA NPA Pironio‐Bell 0.2532 0.250875 Pironio‐Bell 0.2071 0.25 D=2 D=2, 3 5.9907 quantum mechanics 5.8310 D=2, 3 dimension MN, A. Feix, M. Araújo and T. Vértesi, Phys. Rev. A 92, 042117 (2015). max | 1 3 ? | | High level description 1 , Generate random projectors , , ∈B (with app. ranks) Repeat until the is moment matrix Γ a linear combination of Γ ,…,Γ Build moment matrix Γ Γ , = Γ , ⨂ = 1, , ⨂ 1 , , max | 0.229771 1 3 | | SDP hierarchy for quantum communication complexity Dimension D Alice Bob Maximum probability that ∗ , , such that , ∈ , , 0, 1 High level description 1 Generate random , ∈B projectors , app. ranks) (with Build moment matrix Γ Γ , = Γ , , , = 1 ), Repeat until the is moment matrix Γ a linear combination of Γ ,…,Γ SDP hierarchy 1 max 2 s.t. Γ , Γ Γ , , , , 1 0, Γ Γ No proof of convergence!!! MN, A. Feix, M. Araújo and T. Vértesi, Phys. Rev. A 92, 042117 (2015). Random Access Codes (RAC) Alice Dimension D Bob Random Access Codes (RAC) buttons d levels R. Gallego, N. Brunner, C. Hadley and A. Acín, Phys. Rev. Lett. 105, 230501 (2010). Prepare‐and‐measure dimension witnesses Witness Your quantum technology allows you to manipulate systems of dimensión at least D+1 R. Gallego, N. Brunner, C. Hadley and A. Acín, Phys. Rev. Lett. 105, 230501 (2010). R. Gallego, N. Brunner, C. Hadley and A. Acín, Phys. Rev. Lett. 105, 230501 (2010). In the lab Witness? Variational methods hope: the inequality is satisfied by the bigger set R. Gallego, N. Brunner, C. Hadley and A. Acín, Phys. Rev. Lett. 105, 230501 (2010). In the lab Witness? Variational methods hope: the inequality is satisfied by the bigger set R. Gallego, N. Brunner, C. Hadley and A. Acín, Phys. Rev. Lett. 105, 230501 (2010). We proved that all these witnesses were sound, hence validating of the conclusions of the experimental papers M. Hendrych, R. Gallego, M. Micuda, N. Brunner, A. Acín and J. P. Torres, Nat. Phys. 8, 588 (2012). J. Ahrens, P. Badziag, A. Cabello, M. Bourennane, Nat. Phys. 8, 592 (2012). Hierarchy for real quantum systems 1 Generate real random , ∈B (with projectors , app. ranks) Build moment matrix Γ Γ , = Γ , 1, , = 1 ), Repeat until the is moment matrix Γ a linear combination of Γ ,…,Γ Real vs. Complex quantum mechanics Your technology allows you to go beyond complex quantum mechanics in dimension d Your technology allows you to go beyond real quantum mechanics in dimension d max ∑ , , , | , Random Access Codes (RAC) Alice Dimension D real qubits complex qubits 3→1 Bob 0.788675 3→1 0.7696723 The structure of Matrix Product States MN and T. Vértesi, arXiv:1509.04507. s‐local term (acts on particles j,...,j+s‐1) k particles physical dimension ground state Impossible to even store for high k Matrix product states … ∈ ) physical dimension boundary condition bond dimension ,…, D. Perez‐Garcia, F. Verstraete, M.M. Wolf and J.I. Cirac, Quantum Inf. Comput. 7, 401 (2007). Matrix product states Features: a) Efficient computation of expectation values b) Calculations in the thermodynamical limit → ∞ D. Perez‐Garcia, F. Verstraete, M.M. Wolf and J.I. Cirac, Quantum Inf. Comput. 7, 401 (2007). Correspondence between polynomials and states ,…, , homogeneous polynomial of degree m … MN and T. Vértesi, arXiv:1509.04507. | ∗ | ,…, Overlap between a polynomial and a MPS k particles | … | ⨂ … ⨂| ,…, | m particles … … ,…, , ,…, "defect" MN and T. Vértesi, arXiv:1509.04507. | ,…, , ,… Existence of annihilation operators … … | ,…, , ,… ,…, , ,…, , MPI for dimension D 0, for all MPS with bond dimension D!! There exist local operators which annihilate all MPS of bond dimension D or smaller MN and T. Vértesi, arXiv:1509.04507. Actually, for high m, almost all m‐local operators are annihilation operators, because Local dimension of m particles Local dimension of MPS subspace Existence of cut‐and‐glue operators … … | ,…, , ,… ,…, , ,…, scalar p A | ′ , central polynomial for dimension D | ′ … … | ,…, , ,… ,…, , ,…, MN and T. Vértesi, arXiv:1509.04507. MPS with m particles less , basis of homogeneous central polynomials for dimension D of degree m MN and T. Vértesi, arXiv:1509.04507. bond dimension D ,…, C, cut‐and‐glue operator m particles projected onto a pure state (cut form the chain) Two ends glued back C, cut‐and‐glue operator | … ,…, | ⨂ … ⨂| C, cut‐and‐glue operator for dimension D ⊗1 ⊗ 1 , separable , k‐site MPS of bond dimension D | … ,…, | ⨂ … ⨂| Theoretical complexity of the SDP hierarchy and connection with MPS MN and T. Vértesi, arXiv:1509.04507. Complexity of implementing the kth relaxation SDP constraint free variables Free‐dimensional problems have the same complexity as dimension‐constrained ones!? Connection with MPSs Feasible moment matrices are extendible MPSs of bond dimension D!!! MN and T. Vértesi, arXiv:1509.04507. Complexity of implementing the kth relaxation SDP constraint Supp∈span{poly(k) k‐site MPS of bond dimension D} free variables ∈span{poly(k) 2k‐site MPS of bond dimension D} Complexity of implementing the kth relaxation MN and T. Vértesi, arXiv:1509.04507. Finite dimensions are exponentially easier to characterize than infinite dimensions!!! Extra PSD conditions to boost speed of convergence Γ MN and T. Vértesi, arXiv:1509.04507. Extra PSD conditions to boost speed of convergence Γ cut‐and‐glue‐operator C MN and T. Vértesi, arXiv:1509.04507. separable operator Extra PSD conditions to boost speed of convergence Γ cut‐and‐glue‐operator C New PSD conditions separable operator C MN and T. Vértesi, arXiv:1509.04507. PPT Conclusions ‐Simple, easy‐to‐program technique to enforce dimension constraints in noncommutative polynomial optimization. ‐Plenty of numerical evidence suggests that it is effective. ‐It can be combined with other hierarchies, such as MLHG or BFS. T. Moroder, J.‐D. Bancal, Y.‐C. Liang, M. Hofmann and O. Gühne, Phys. Rev. Lett. 111, 030501 (2013). M. Berta, O. Fawzi and V. B. Scholz, arXiv:1506.08810.
© Copyright 2025 Paperzz