Miscellaneous Examples (with Solutions)
1.
(a)
Class marks, x
215
225
235
245
255
265
275
285
Mean,
x
f
2
5
4
8
10
5
4
2
40
fx
430
1125
940
1960
2550
1325
1100
570
10000
fx2
92450
253125
220900
480200
650250
351125
302500
162450
2513000
fx 10000 $250
f 40
Standard deviation,
S
n( fx 2 ) ( fx) 2
n( n 1)
40(251300) (10, 000) 2
40(39)
$18.26
(b)
Median 250
20 19
10
10
$251
(c)
Mean = $250
Standard deviation = $18.26
Median = $251
Pearson’s 2nd coefficient of skewness
3(mean median) 3(250 251)
0.164
Std. deviation
18.26
the distribution is nearly symmetrical.
Miscellaneous Examples (with Solutions)
(d)
Percentage of workers whose daily income is at least $242 but less than $280
8
10 5 4
10
100%
40
25.4
100% 63.5%
40
8
(e)
S
100%
x
18.26
CV (QMB)
100% 7.3%
250
400
CV (rival firm)
100% 5.7%
7000
Coefficient of Variation, CV
CV (QMB) CV (rival firm)
Therefore, QMB workers’ income is more variable.
2.
(a)
Frequency Table:
-5 - under 0
0 - under 5
5 - under 10
10 - under 15
15 - under 20
20 - under 25
25 - under 30
30 - under 35
Total
f
x
2
2
4
8
11
13
6
4
–2.5
2.5
7.5
12.5
17.5
22.5
27.5
32.5
50
Miscellaneous Examples (with Solutions)
Cumulative Frequency Table:
Under
-5
Cumulative frequency
0
0
5
10
15
20
25
30
35
2
4
8
16
27
40
46
50
fx 910 fx 2 20, 212.5
mean
910
18.20 ($ million)
50
(50 / 2) 16
5
11
19.09 ($ million)
median 15
20.212.5 9102
standard deviation
50 49
49
8.63 ($ million)
Miscellaneous Examples (with Solutions)
(b) Cumulative frequency curve
Cumulative Frequency Curve
Cumulative total number of companies
60
50
40
30
20
10
0
-5
0
5
10
15
20
25
30
35
Annual profit ($ million)
(c)
Profit exceeded by 30% of the companies is equivalent to profit that is less than by
70% of the companies
= 23.1 ($ million)
(a)
Histogram
450
400
350
Number of customers
3.
300
250
200
150
100
50
0
0
5
10
15
Times per annum
20
25
30
Miscellaneous Examples (with Solutions)
(b)
fx 26026, fx2 394058, f 2000
X
fx 26026
13.013
f
2000
Mode 11.5
403 337
(3) 11.5 2.6053 14.1053
(403 337) (403 393)
Median 11.5
Q1 8.5
1000 774
(3) 11.5 1.6824 13.1824
403
500 1177
(3) 8.5 .5608 9.0608
337
Q3 15.5
1500 1177
(3) 15.5 2.4656 17.9656
393
1
394058
26026 2 2
S
2000(1999)
1999
1
[27.7047] 2 5.2635
Mean Mode 13.013 14.1053
0.2075
S
5.2635
3(Mean Median) 3(13.013 13.1824)
or SK 2
0.0966
S
5.2635
SK1
C.V .
(c)
S
5.2635
100%
100% 40.4480
13.013
x
The distribution of customer purchasing behaviour is slightly skewed to the left.
Miscellaneous Examples (with Solutions)
4.
Let A be the event of the award for design
Let B be the event of the award for material
Pr( A) 0.28,
Pr( B ) 0.13,
Pr( A B ) 0.36
Pr( A B ) Pr( A) Pr( B ) Pr( A B )
0.28 0.13 0.36
0.05
5.
Let G be the event of good loan
Let B be the event of bad loan
Let L be the event of long-term loan
Let S be the event of short-term loan
Pr(G ) 0.8,
Pr( B) 0.2
Pr( L | G ) 0.7, Pr( S | G) 0.3
Pr( L | B) 0.2, Pr( S | B) 0.8
Pr(G ) Pr( L | G )
Pr( L)
Pr(G ) Pr( L | G )
Pr(G ) Pr( L | G ) Pr( B) Pr( L | B)
0.8 0.7
0.8 0.7 0.2 0.2
56
60
14
15
0.933
Pr(G | L)
Miscellaneous Examples (with Solutions)
6.
There are only 3 cases for at least one of each course,
i.e.
Management
2
1
1
Accountancy
1
2
1
Marketing
1
1
2
Therefore, the required probability
6 7 3 6 7 3 6 7 3
2 1 1
1 2 1
1 1 2
16
4
0.45
7.
(a)
Let X be random variable of the sales volume in units,
X ~ N (10000, 20002 )
Pr(7000 X 13000)
13000 10000
7000 10000
Pr
Z
2000
2000
Pr(1.5 Z 1.5)
1 2 0.0668
0.8664
(b)
Let y be the sales volume for break even,
y (20 16) 30000
30000
4
7500
y
Miscellaneous Examples (with Solutions)
Pr(at least break even)
Pr( y 7500)
7500 10000
Pr Z
2000
Pr( Z 1.25)
1 0.1056
0.8944
8.
P defective ball pen is among the 3 chosen for testing
9.
19
C2 1 C1 171
0.15
1140
20 C3
P 1 defective ball pen is found among the 3 chosen for testing
15 8 C2 2 C1 5 9 C2 1 C1
20
20
10 C3
10 C3
15 56 5 36
0.425.
20 120 20 120
10. Let X be the life of the randomly selected motor.
Then X ~ N(12 , 32),
10 12 X 15 12
P(10 X 15) P
3
3
P(0.67 Z 1)
1 0.2514 0.1587
0.5899
11. Let A be the event of the defective part detected by 1st inspector
B be the event of the defective part detected by 2nd inspector
P(A) = 0.85, P(B) = 0.85, P(A B) = 0.8
(a)
P ( B | A) P ( B A) / P ( A)
P( B) P( A B)
1 P ( A)
0.85 0.80
0.333
1 0.85
Miscellaneous Examples (with Solutions)
(b)
P( A B) P( A) P( B) P( A B)
0.85 0.85 0.80
0.90
(c)
1 P( A B) 1 0.903
3
0.271
12.
Let X be the random variable of the number of customer who turn up in the 55
X ~ b (55, 0.85)
Mean = np = 55(0.85)
= 46.75
npq 55(0.85)(0.15)
2.6481
Required probability:
Pr( X 50)
By Normal approximation, the required probability
50.5 46.75
Pr( X 50.5) Pr Z
2.6481
Pr( Z 1.42)
1 0.0778
0.9222
Miscellaneous Examples (with Solutions)
13.
Let the mean of the distribution of the number of errors per page be and X be the
Poisson random variable. Then
Pr( X 0)
e
0.14
0!
Hence = 1.966 and
e1.966 (1.966)1
1!
0.275
Pr( X 1)
The required percentage is 27.5%.
14. (a) Let X be the random variable of the number of error per 2 pages.
4 error per 2 pages, X ~ Po( )
e 4 4 x
x!
x 0
2
P( X 3)
40 41 42
e 4
0! 1! 2!
0.2381
(b)
P ( X 5) 1 P ( X 5)
e 4 4 x
1
x!
x 0
5
43 4 4 4 5
1 e 1 4 8
3! 4! 5!
0.2149
4
15.
(a) Let H be the event of an employee who was in favour of the modified health care
plan
W be the event of an employee who was in favour of the proposal to change
the work schedule.
P( H ) 0.42, P(W ) 0.22, P(W | H ) 0.34
Miscellaneous Examples (with Solutions)
P( H W ) P( H ) P(W ) P( H W )
0.42 0.34 0.1428
(b) P( H W ) P( H ) P(W ) P( H W )
0.42 0.22 0.1428 0.4972
(c) P( H | W )
P( H W ) 0.1428
0.6491
0.22
P(W )
16. (a) Let X be the rate of return (%)
X ~ N (12.2, 7.22 )
20 12.2
P( X 20) P Z
7.2
P( Z 1.08) 0.1401
(b)
17.
0 12.2
P( X 0) P Z
7.2
P( Z 1.69) 0.0455.
n1 n2 2.20,
pˆ1 0.36,
pˆ 2 0.30
Let P1 , P2 be the True proportion of response to single-sheet questionnaire and two-sheet
questionnaire respectively.
Then a 95% C.I. for P1 P2 is
( pˆ1 pˆ 2 ) 1.96
pˆ1 (1 pˆ1 ) pˆ 2 (1 pˆ 2 )
n1
n2
(0.36 0.30) 1.96
0.36(0.64) 0.30(0.70)
220
220
0.06 0.088 (0.028, 0.148)
Miscellaneous Examples (with Solutions)
18. Let P be the population proportion.
n 225, x 67
pˆ
67
0.298
225
A 95% C.I. estimate for P is
pˆ (1 pˆ )
pˆ 1.96
n
0.298(0.702)
i.e. 0.298 1.96
225
i.e. 0.298 0.060, i.e. (0.238,0.358)
19. H0 : Printing errors are independent of type size.
H1 : Printing errors are dependent on type size.
= 0.05, (2 1)(3 1) 2
2
CR: 2 0.05
5.991
Computation:
Pages with errors
Pages without errors
Total
A
23
(29.9)
241
(234.1)
264
Type Size
B
C
17
41
(22.7)
(28.4)
183
210
(177.3)
(222.6)
200
251
Total
81
634
715
6.92 5.72 12.62 6.92
5.72 12.62
29.9 22.7 28.4 234.1 177.3 222.6
9.714
Test statistic, 2
Conclusion: Reject H0.
Miscellaneous Examples (with Solutions)
20. (a)
Let 1 , 2 be the true mean absenteeism of recent ex-smokers and long-term exsmokers, respectively.
n1 34
x1 2.21 s1 2.21
n2 68 x2 1.47 s2 1.69
H 0 : 1 2 , i.e. 1 2 0
H1 : 1 2
0.05
CR : Z 1.96 and
Test statistic, z
Z 1.96
( x1 x2 ) ( 1 2 )
s12 s22
n1 n2
(2.21 1.47) 0
2.212 1.692
68
34
1.717
Conclusion: Do not reject H0
(b) Level of significance () is the probability of committing type I error in a
significance test. In general, is set equal to 0.05. However, if the consequence of
committing type I error in a significance test is serious in terms of monetary loss,
then a low value, for example, 0.01, should be used instead.
Miscellaneous Examples (with Solutions)
21. (a)
n 545 x 117
pˆ
117
0.2147
545
Let P be the population proportion of accountants finding cash flow the most
difficult estimates to derive.
H 0 : P 0.25; H1 : P 0.25
0.05; CR : Z 1.645
Test statistic, z
pˆ p
0.2147 0.25
p (1 p )
0.25(0.75)
n
545
1.903
Conclusion: Reject H0.
0.25(0.75)
545
0.25 0.0305
(b) c p 1.645
0.2195
So probability of rejecting H0 when the true P = 0.28 is
0.2195 0.28
P pˆ 0.2195 P Z
0.28(0.72)
545
P{Z 3.145}
0.00083.
22. (a)
n 8 x 192
y 608
x 4,902 xy 15, 032 y 2 47, 094
n xy ( x)( y ) 8(15, 032) 192(608)
n x 2 ( x) 2
8(4,902) 192 2
3,520
1.4966
2,352
b
Miscellaneous Examples (with Solutions)
a y bx 76 1.4966(24) 40.0816
yˆ 40.0816 1.4966 x
(b)
yˆ 40.0816 1.4966(30) 84.9796
(c)
r
n xy ( x)( y )
[n x ( x) ][n y ( y ) ]
2
2
2
2
3520
2352(7088)
3520
0.8621
4083.0107
This value of r shows a strong positive relationship between hours of study and
examination grade.
(d)
r 2 (0.8621)2 0.7432
This means hours of study can explain 74.32% of variation on examination grade in
the regression equation.
23. (a)
n 10 x 0.56 y 96.7
x 2 0.0367 xy 5.8
nxy (x)(y )
n x 2 ( x ) 2
(10)(5.8) (0.56)(96.7)
72.060
(10)(0.0367) 0.56 2
b
a y bx
96.7
0.56
(72.060)(
)
10
10
5.635
yˆ 5.635 72.060 x
The slope of the linear regression line is 72.060 and this implies that the P/E ratio
of a company is expected to be increased by 0.72060 for each 0.01 increase in its
R/S ratio, i.e. for each 1 cent increase in research & development expenditure per
dollar of sales.
Miscellaneous Examples (with Solutions)
(b) If
x 0.060,
then
yˆ 5.635 (72.060)(0.060)
9.96
Reliability of this estimate is low because n is equal to 10 only and r = 0.57
(i.e. only 0.32% of the variation in y is explained by the regression line).
24.
1 1.09 n
5, 000, 000 1, 000, 000
0.09
5, 000, 000
0.09 1 1.09 n
1, 000, 000
(a)
1.09 n 0.55
n
n 0.55
6.94.
n 1.09
So six payments of $1,000,000 are required.
(b) Let x be the final payment.
Then
x
1 1.096
5, 000, 000 1, 000, 000
7
0.09 1.09
x
i.e. 5, 000, 000 4, 485,918.6
1.828039
x 939,760.8 $
Miscellaneous Examples (with Solutions)
25. Let i be the rate of interest being charged.
Then
1 (1 i ) 12
10, 000 1, 000
i
1 (1 i ) 12
i
9954
10258
i
0.03
0.025
So i should be
10258 10000
(0.03 0.025)
10258 9954
258
0.025
0.005
304
0.029 (i.e. 2.9% p.a.)
0.025
26.
3,850, 000 R a240 0.007083
where i =
0.085
0.007083
12
3,850, 000
3,850, 000
240
115.2308432
1 (1.007083)
0.007083
$33, 411.19
R
Miscellaneous Examples (with Solutions)
27.
(a)
2
B3 200, 000a2 0.0875 200, 000a5 0.095 v0.0875
1 (1.0875) 2 1 (1.095) 5
200, 000
(1.0875) 2
0.095
0.0875
200, 000 1.765094464 3.246682023
200, 000 5.011776487
1, 002,355.297
I 4 0.0875 B3 0.0875(1, 002,355.297)
$87, 706.09
P8 B7 B8 200, 000a3 .095 200, 000a2 .095
(b)
1 (1.095) 3 1 (1.095) 2
200, 000
.095
.095
200, 000 0.761653851 $152,330.77
1
1
L
L
L
2
2
(0.05)
28. 1000
a10 0.05
2 S10 0.04
L
1000
1
2a10 0.05
0.025
1
100
0.06475 0.025 0.04165
2 s10 0.04
1000
$7, 610.35
0.1314
29. Trading profit ( ) TR TC
(3500Q 8Q 2 ) (Q 3 6Q 2 120Q 600)
Q 3 2Q 2 3380Q 600
d
0, i.e. 3Q 2 4Q 3380 0
dQ
i.e. 3Q 2 4Q 3380 0
Miscellaneous Examples (with Solutions)
4 (42 4 3 (3380))
Q
23
4 201.4
6
32.9 or 34.2 (unacceptable)
d 2
6Q 4 0 when Q 32.9
dQ 2
trading profit will be maximized when Q = 32.9
30. TR PQ (6e0.04Q )Q
d
TR 0
dQ
6e0.04Q Q6e0.04Q (0.04) 0
6e0.04Q (1 0.04Q) 0
1
25
0.04
P 6e0.04(25) 2.21
Q
d2
TR 6e 0.04Q (0.04) 0.24e 0.04Q 0.24Qe 0.04 Q (0.04)
2
dQ
0.48e 0.04Q 0.0096Qe 0.04Q
e 0.04Q (0.0096Q 0.48)
0.088 when Q 25
when Q = 25 and then P = 2.21, total revenue will be maximized.
31.
Total interest = ($50,000)(0.12) = $6000
Monthly repayment =
$50, 000 $6, 000
$4666.67
12
The flat rate tends to understate the effective rate since the flat rate is a percentage of
the amount originally borrowed, however, the balance owing from time to time
reduces as repayments are made.
Miscellaneous Examples (with Solutions)
32.
1 (1 i ) 240
2,800, 000 R
i
10%
i
0.0083
12
R $27021
33. (a)
TR PQ 200Q Q 3
dTR
200 3Q 2
dQ
dTC
MC
8 2Q
dQ
MR
To maximize profit, MC = MR
200 3Q 2 8 2Q
3Q 2 2Q 208 0
(2) (2) 2 4(3)(208)
2(3)
Q 8.67(impossible) or Q 8.
Q
The price should be P 200 (8)2 136
(b)
dQ
1
dP
2Q
P
E 2
2Q
136
1.0625
2(8) 2
The demand is elastic at the point of maximum profit.
when P 136 and Q 8, E
© Copyright 2026 Paperzz