NCN www.nanohub.org ECE695: Reliability Physics of Nano-Transistors Lecture 32: Physical vs. Empirical distribution Muhammad Ashraful Alam [email protected] Alam ECE 695 1 Copyright 2013 This material is copyrighted by M. Alam under the following Creative Commons license: Conditions for using these materials is described at http://creativecommons.org/licenses/by-nc-sa/2.5/ 2 Alam ECE 695 Outline 1. Physical Vs. empirical distribution 2. Properties of classical distribution function 3. Moment-based fitting of data 4. Conclusions Alam ECE 695 3 Data vs. Hypothesis Outliers identified (box-plot, Chauvenet) Trend identified using median based plotting, stem-leaf histogram CDF plotted using Kaplan-Meier formula Non-parametric bootstrap to identify parameter uncertainty Empirical reliability (Hypothesis testing) Statistical reliability (Series/parallel systems) Physical Reliability (Distribution function, prediction of an analytical model 4 Statistical Distribution is Physical Experiments Weibull Log-normal Normal exponential Fish-in-a-river (Inverse exp.) Fermi distribution Bose-Einstein Dist (coin-flip) unknown Flutter of Saturn probe (unknown) If a problem can be mapped into one of the well known family, large number of results are available. 5 Outline 1. Physical Vs. empirical distribution 2. Parametric Vs. non-parametric fits 3. Estimating various distribution functions 4. Conclusions Alam ECE 695 6 Choosing distribution function People choose functions that describe wide range of phenomena Normal: After all, everything eventually becomes normal (not really!) Distribution of last resort. Log-Normal: A variant of normal distribution that seems to describe many reliability problems phenomenologically (correlated processes, such as electromigration in interconnects, shunt distribution in solar cells) Weibull: Many physical systems are described by it. In the limiting case, it becomes Exponential distribution (extreme value problems such as thin oxide breakdown) Alam ECE 695 7 Two parameter family: Normal distribution Binomial distribution, Poisson distribution, chi-square, student-t distribution … {t − µ}2 1 f (t ; µ ,σ )= ⋅ exp − 2 2σ σ 2π 1 + erf ( z F (t ) = Φ (σ −1 ( t − µ ) ) Φ ( z ) = MATpd = fitdist(data,'Normal') CDF PDF µ =average, σ =standard deviation 2) / 2 http://en.wikipedia.org/wiki/Normal_distribution 8 Two parameter family: log-normal distribution 2 ln(t ) − ln( µ )} 1 { (PDF) f (t ; µ = ,σ ) ⋅ exp − 2 2σ t × σ 2π µ =average, σ =standard deviation −1 t 1 + erf ( z (CDF) F (t ) = Φ σ ln Φ ( z ) = µ σ 2) / 2 ln(t2 t1 ) / Φ −1 ( F (t2 )) − Φ −1 ( F (t1 ) ln( t2 @ F 0.5= / t1 @ F 0.159) = − σ 2 {ln(t µ )}2 2 exp 2 1 λ (t ) = π tσ erf 0.5 ln(t µ ) σ { } http://en.wikipedia.org/wiki/Log-normal_distribution 9 Two parameter family: Weibull distribution Abrahmi recystallization (1905) β β −1 −( t α )β (α , β > 0) f (t ;α , β ) = β ⋅ t ⋅ e α 1 − exp ( −(t α ) β ) F (t ) = 4 3.5 f(t,α,β) 3 2.5 β =shape parameter, α =scale parameter 1.5 λ (t ) = β −1 βt αβ β=0.1 β=1 β=10 2 1 β=1 …. Exponential distribution 0.5 0 0 0.2 0.4 0.6 0.8 1 Time (t) Memory-less distribution, constant hazard rate 1.2 1.4 1.6 1.8 2 β=2 …. Rayleigh distribution Light scattering, Corrosion in contacts, Failure rate increases with time http://en.wikipedia.org/wiki/Weibull_distribution 10 Empirical statistical distributions Normal 1 e 2πσ PDF − Log Normal ( t − µ )2 2σ 1 e tσ 2π 2 − Weibull (ln t − ln µ )2 2σ f(t) f(t) β α 2 t ⋅ α β −1 ( ) ⋅e α − t β f(t) Asymmetric β=1 σ β=3 PDF μ CDF 1 1 + erf 2 2 t t t − µ σ 2 t 1 1 ln t − ln µ + erf 2 2 σ 2 ( α) 1− e − t β ln(-ln(1-F(t))) F(t) F(t) β=1 CDF β=3 t Alam ECE 695 t t 11 Empirical statistical distributions Normal 1 e 2πσ PDF − Log Normal ( t − µ )2 2σ 1 e tσ 2π 2 f(t) − Weibull (ln t − ln µ )2 2σ β α 2 t ⋅ α β −1 ( ) ⋅e α − t f(t) f(t) β=1 Asymmetric σ β=3 PDF μ t t t ln(-ln(1-F(t))) F(t) F(t) β=1 CDF β=3 t t Moment 1st µ µ ⋅e Moment 2nd σ2 ( σ2 − σ t 2 α 2 ) σ2 2µ ⋅ e − 1 ⋅ e α 2 1+ 1 β 2 1 − α 2 Γ 2 (1 + ) β β12 β Definitions of distribution functions Name Prob. distribution cumulative PDF survival function hazard rate cum. hazard rate average hazard Symbol f (t ; α, β,...) Expression f (t ; α, β,...) t F (t ) ∫ R( t ) 1 − F (t ) λ(t ) f (t ) 1 − F (t ) H (t ) λ c (t ) f (t ' )dt ' −∞ ∫ t o λ(t ' )dt ' t 1/ t ∫ λ(t ' )dt ' o These functions are used in difference fields in different ways … Alam ECE 695 13 Example: Derivation of hazard function H(t) … Probability that having survived till time t (event A), it fails within time (t+dt) (event B) B includes A ….(failed before) P( A * B) P( B) P( B A) = = = P( A) P ( A) f (t )dt f (t ) ⇒ h(t ) = R(t ) R(t ) Integrated Hazard till time t …. t H (t ) = ∫ h(u)du = − ln R(t ) 0 Alam ECE 695 14 Discrete Transform: because data is discrete Fi = = fi = λi i −α n − 2α + 1 dFi Fi +1 − Fi = = dt ti +1 − ti fi = 1 − Fi 1 ( n − 2α + 1)( ti +1 − ti ) 1 ( n − i − α + 1)( ti +1 − ti ) Alam ECE 695 15 Transformation among reliability functions F (t ) f (t ) f (t ) dF (t ) dt f (t ) F (t ) ∫ot f (t ' )dt ' R( t ) ∞ ∫ ' f (t )dt t λ(t ) ∫ F (t ) 1 − F (t ) ' f (t ) ∞ t ' f (t )dt (∫ H (t ) − ln λ c (t ) 1 − ln t ∞ − ' ' f (t )dt t (∫ ∞ t ' ) f (t ' )dt ' λ(t ) R(t ) d λ c (t ) −λ ( t ) t λ ( t ') dt ' − H ( t ) dH ( t ) ∫ λ + t 0 e c e λ ( t )e dt dt 1 − R(t ) λ ( t ') dt ' ∫ 0 1− e R( t ) − ln(1 − F (t )) − ln R(t ) − − ln R(t ) t t t c 1 − e − H (t ) 1 − e −λc ( t ) t λ ( t ') dt ' ∫ 0 e e − H (t ) e −λc ( t ) t λ(t ) dH (t ) dt λc + t H (t ) t λ c (t ) H (t ) t λ c (t ) − − ∫ t o ) λ c (t ) dR(t ) − dt d ln(1 − F (t )) d ln R(t ) − dt dt − ln(1 − F (t )) t H (t ) t λ(t ' )dt ' t 1/ t ∫ λ(t ' )dt ' o HW: Derive a few reliability functions yourself ... d λ c (t ) dt 16 Series and parallel systems: how to use the distribution functions 1 − Fs (t ) = [1 − F1 (t ) ] × [1 − F2 (t ) ] × ... Fs (t ) = F1 (t ) × F2 (t ) × ... Rs (t ) = R1 (t ) × R2 (t ) × ... 1 − Rs (t ) = [1 − R1 (t ) ] × [1 − R2 (t ) ] × ... dF dt −dR dt d λ= = = − ln R R(t ) dt 1 − F (t ) Advantage of redundant system .. λ s (t ) = λ1 (t ) + λ 2 (t ) + ... λ i (t ) 1 + F + F 2 + ...F n −1 = λ s (t ) nF n −1 R1, R2, … may have different distributions 17 Outline 1. Physical Vs. empirical distribution 2. Properties of classical distribution function 3. Moment-based fitting of data 4. Conclusions Alam ECE 695 18 Matching moments to distributions Of 60 oxides, 7 failed in 1000 hrs 0.14 Rank Lifetime Fi= (i-0.3)/(n+0.4) 1 181 0.012 2 299 0.028 3 389 0.045 4 430 0.061 5 535 0.078 6 610 0.094 0.02 7 805 0.111 0 0.12 CDF 0.1 Measured Data Log -normal distribution Weibull distribution Weibull Distribution Parameters When t=α, ln(1-F(t))=-1, F(t)=0.632, a=2990 β estimated using parameter fitting as 1.56 0.08 0.06 0.04 Good match at high (F) 10 2.3 10 2.4 10 2.5 10 2.6 102.7 10 2.8 10 2.9 Time Log-Normal Distribution Parameters s=ln(T50%/T15.9%), σ=ln(3600/980)=1.30 μ=ln(T50%)=ln(3600)=8.19 19 Problem of matching the moments Log-normal distribution is considerably optimistic 20 Problem of matching distribution: BFRW P ( x,= t 0) = δ ( x − x0 ) ∂P ∂2P =D 2 ∂t ∂x P ( x, t ) t (4π Dt ) P= ( x 0,= t) 0 −1 2 e − ( x − x0 )2 4 Dt L −e 1 ⇒ f (t ) = ∫ f (τ )dτ + ∫ P( x, t )dx = 0 0 Alam ECE 695 − ( x + x0 )2 4 Dt x0 4π Dt 3 e − x02 4 Dt 21 Match apparently reasonable, but wrong t k −1e − t θ = fG (t ) = Tavg kθ k Γ(k )θ Monte Carlo Monte Carlo 1000 Samples 1000, 10000, 50000 -4 10 Gamma distribution PDF -6 10 Log-normal distribution -8 10 PDF = x0 4π Dt 3 e − x0 2 4 Dt → t −3/2 -10 10 2 10 4 6 10 10 Time to reach the fall Alam ECE 695 8 10 22 Conclusions 1. Once the data is plotted using the principles discussed in lecture, 31 one should develop a statistical model for the phenomena involved. 2. If unsuccessful, one should choose functions with least number of variables that described the system. In reliability, 2-parameter family such as log-normal, Weibull distributions are most popular, because they have been seen to give good results for correlated and weakestlink problems. 3. Reliability is an extreme value problem, therefore one should pay particular attention to tails of the distribution and choose sample size accordingly. 4. Moment-based methods are popular, but cannot distinguish between the tails of the distribution (reflects very high moments). Alam ECE 695 23 References D. C. Hoaglen, F. Mosteller, and J.W. Tukey, “Understanding Robust and Exploratory Data Analysis”, Wiley Interscience, 1983. Explains the importance of Median based analysis when the dataset is small and the quality cannot be guaranteed. AT&T, “Statistical Quality Control Handbook”. Joan Fisher Box, “R. A. Fisher and the Design of Experiments, 1922-1926”, The American Statistician, vol. 34, no. 1, pp. 1-7, Feb. 1980. Linda C. Wolsterholme, “Reliability Modeling – A Statistical Approach, Chapman Hall, CRC, 1999. Chapter 1-7 has excellent summary of ‘Goodness of Fit” analysis. R. H. Myers and D.C. Montgomery, “Response Surface Methodology”, Wiley Interscience, 2002. This book discusses design of experiment in great detail. An excellent textbook that covers many topics discussed in this Lectures is Applied Statstics and Proability for Engineers, 3rd Edision, D.C. Montgomery and G. C. Runger, Wiley, 2003. F. Yates, “Sir Ronald Fisher and the Design of Experiments”, Biometrics, vol. 20, no. 2, In Memoriam: Ronald Aylmer Fisher, 1890-1962., pp. 307-321, (Jun. 1964. Ranjith Roy, “A primer on the Taguchi Method”, Van Nostrand Reinhold International Co. Ltd., 1990. Lloyd W Condra, “Reliability Improvement with design of experiments”, Marcel Dekker Inc., 1993. Alam ECE 695 24
© Copyright 2026 Paperzz