Frost Risk Mapping Using Satellite Data C. Domenikiotis1, M. Spiliotopoulos2, E. Kanelou2 and N. R. Dalezios1 1Department of Agriculture Animal Production and Aquatic Environment 2Department of Management of Environment and Natural Resources University of Thessaly Volos, GREECE Aim Frost risk mapping Objectives Examination of cases with radiation frost. Comparison of satellite derived LST and air temperature as recorded at the meteorological stations of this area. Classification of Thessaly region according to the temperature pattern of meteorological stations. Region of study (Total area ~14.000 Km2) TYRNAVOS KARDITSA AGIA VOLOS AGHIALOS ZAGORA Dataset Air Temperature Data, from six meteorological stations in Thessaly region, for the years 1999, 2000, 2001. Satellite Data from NOAA/AVHRR for the years 1999,2000,2001. Meteorological maps (850hPa and 500hPa). Methodology Steps Processing of temperature data. Preprocessing of satellite data. Correlation between satellite and meteorological data. Classification of the study area. Spatiotemporal expansion of data. Validation. Frost risk mapping. Processing of temperature data Selection of minimum air temperature (06:00 for summer time or 07:00 for winter time). Satellite images are georeferenced, and values of brightness temperature are retrieved. Comparison of satellite and in situ data. Image Processing Utilization of sixty-six (66) non-cloud night images from NOAA/AVHRR, where radiation frost is appearing. Examination of the synoptic conditions of the 66 selected days. 16 night images were rejected, where cold or warm advections are observed. Finally fifty (50) images with normal conditions are utilized. Selection of “clear” (non cloud) images, (50 images). Extreme cold advection (Example) Normal conditions (Example) Finally selected images Α/Α Date Time Α/Α Date Time Α/Α Date Time 1 31-01-2000 6:00 18 24-03-2000 6:00 35 07-02-2001 6:00 2 01-02-2000 6:00 19 25-03-2000 6:00 36 08-02-2001 6:00 3 02-02-2000 6:00 20 07-04-2000 7:00 37 09-02-2001 6:00 4 03-02-2000 6:00 21 09-04-2000 7:00 38 13-02-2001 6:00 5 05-02-2000 6:00 22 05-05-2000 7:00 39 14-02-2001 6:00 6 07-02-2000 6:00 23 06-01-2001 6:00 40 16-02-2001 6:00 7 08-02-2000 6:00 24 07-01-2001 6:00 41 17-02-2001 6:00 8 25-02-2000 6:00 25 10-01-2001 6:00 42 18-02-2001 6:00 9 29-02-2000 6:00 26 11-01-2001 6:00 43 21-02-2001 6:00 10 01-03-2000 6:00 27 12-01-2001 6:00 44 22-02-2001 6:00 11 02-03-2000 6:00 28 13-01-2001 6:00 45 23-02-2001 6:00 12 07-03-2000 6:00 29 15-01-2001 6:00 46 16-03-2001 6:00 13 08-03-2000 6:00 30 16-01-2001 6:00 47 03-04-2001 7:00 14 09-03-2000 6:00 31 19-01-2001 6:00 48 04-04-2001 7:00 15 12-03-2000 6:00 32 03-02-2001 6:00 49 07-04-2001 7:00 16 15-03-2000 6:00 33 05-02-2001 6:00 50 25-04-2001 7:00 17 23-03-2000 6:00 34 06-02-2001 6:00 Correlations Between Ts and Tmin Station Relations r R2 Fytoko Ts= 0.6297Tmin-5.5553 0.85 0.72 Zagora Ts =0.9108Tmin+3.5965 0.96 0.93 Aghialos Ts =0.8455Tmin+0.6077 0.87 0.75 Agia Ts =0.7365Tmin+2.5588 0.85 0.73 Karditsa Ts =0.9949Tmin+1.6338 0.95 0.88 Tyrnavos Ts =0.9715Tmin+2.3536 0.98 0.96 Classification of the study area Correlation between the LST corresponding to every station and any pixel of the whole Thessaly region. Selection of the highest correlation for each pixel Assignment of each pixel to one of the stations Classification of the whole area, based on meteorological stations. Mapping of Thessaly in six sub- regions. Result of the Classification Spatiotemporal extension of the air temperature data Combination of two regression equations: (i. between air temperature and surface temperature and ii. between pixel corresponding to the meteorological station and other pixels of the region) Tmin (x,y) = a΄ Tmin (xi,yi) – a΄ b + ab΄ + b where: a΄: slopes from the regression (i) b΄: intercepts from the regression (i) a: slopes from the regression (ii) b: intercepts from the regression (ii) Tmin (xi,yi): minimum temperature at station’s location. Validation of the method April model (1994-1995-1997-2001) Έτη Stations 1994 Obser. 1994 Estim. 1995 Obser. 1995 Estim 1997 Obser. 1997 Estim 2001 Obser. 2001 Estim Volos 4,56 3,98 5,75 5,07 1,08 1,82 -3,83 -3,67 Zagora 7,35 4,83 1,84 5,84 1,22 1,65 3,76 -2,76 Aghialos 3,84 3,74 1,69 1,78 -0,18 0,08 2,86 2,85 Agia 2,81 2,57 -1,80 -0,60 -1,10 -0,09 1,31 1,55 Karditsa 3,33 3,30 -2,67 -1,50 0,60 1,11 4,34 5,04 Tirnavos 7,30 7,32 2,07 2,38 0,95 1,32 - - Comparison between observed and estimated values. Correlation between observed and estimated values for April Correlation between observed and estimated values for March 8 4 0 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 -4 1 2 3 4 5 6 7 8 -8 -12 Observed values Estimated values Estimated values 8 4 0 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 -4 -8 y = 0,863x + 0,4959 R2 = 0,9591 Observed values y = 0,8973x + 0,4004 R2 = 0,9753 Frost risk mapping Definition of surface temperature thresholds (0ο C, -1o C, -2o C). Utilization of 18 images of spatial extension (9 per month) and the classification map. Frost probability (%) division to ten (10) classes for the whole Thessaly region. Frost risk map (March - temperature threshold -1o C) Frost risk map (April - temperature threshold -1o C) Frost risk mapping results (April) Threshold 0ο C Threshold -1ο C Threshold -2ο C Frost Risk % No of pixels Percentage % No of pixels Percentage % No of pixels Percentage % 0-10 1943 13,89 3659 26,17 6070 43,41 11-20 1923 13,75 3213 22,98 3283 23,48 21-30 1212 8,67 1094 7,82 351 2,51 31-40 1525 10,91 1582 11,31 1643 11,75 41-50 1140 8,15 688 4,92 448 3,20 51-60 3024 21,62 1499 10,72 599 4,28 61-70 1221 8,73 864 6,18 688 4,92 71-80 59 0,42 24 0,17 41 0,29 81-90 345 2,47 319 2,28 313 2,24 91-100 1592 11,38 1042 7,45 548 3,92 Results High correlation between conventional and satellite data. Satisfactory pixel by pixel classification of Thessaly region, according to the temperature characteristics of the sub-regions. Satisfactory spatial and temporal extension of data with average deviation 0.5ο C. Conclusions The described procedure: Identifies the areas with common temperature characteristics. Could be a useful tool for the estimation of minimum air or surface temperature for each 1x1 km pixel. Could provide accurate information about frost impact in agriculture. Recommendations Dense network of meteorological stations as well as more representative stations is required. Utilization of minimum correlation threshold for the pixel by pixel classification (e.g. R2>70%). Application of the method to a more satisfactory data series. Application of the method to agriculture, crop yielding, as well traffic protection. Extension of the method to whole Greece.
© Copyright 2026 Paperzz