Section 3.8 PROPERTIES OF FOURIER REPRESENTATIONS Periodic (t,n) Time property Nonperiodic (t,n) • Fourier Series (FS) C.T. (t) x(t ) (3.19) X [k ] (3.20) jk 0t X [ k ] e , 0 k 1 T T 0 2 T x(t )e jk 0t dt , (T: period) • Four Transform (FT) 1 jt x(t ) X ( j ) e d 2 (3.35) X ( j ) x(t )e jt dt (3.36) • Discrete-Time Fourier Transform (DTFT) jk 0 n N 1 1 2 j jn x[n] X ( e ) e d x[n] X [k ]e , 0 2 N k 0 (3.10) (3.31) 1 X [k ] N (3.11) N 1 x[n]e n 0 Discrete [k] jk 0 n (N: period) X (e j ) (3.32) (k,) • Discrete-Time Fourier Series (DTFS) D.T. [n] Nonperiodic x[n]e Periodic (k,) jn n Continuous (, ) Freq. property • Linearity and symmetry FT z (t ) ax(t ) by (t ) Z j ) aX j ) bY j ) FS ; 0 z (t ) ax(t ) by (t ) Z [k ] aX [k ] bY [k ] DTFT z[n] ax[n] by[n] Z e j ) aX e j ) bY e j ) DTFS ; 0 z[n] ax[n] by[n] Z [k ] aX [k ] bY [k ] E Example 3.30, p255: z (t ) 3 1 x(t ) y (t ) 2 2 Find the frequency-domain representation of z(t). Which type of freq.-domain representation? • FT, FS, DTFT, DTFS ? Periodic signals, continuous time. Thus, FS. 3 1 X [k ] Y [k ] 2 2 1 Tx X [k ] x(t )e jk 0 xt dt Tx 0 Z [k ] 1 Tx 1/ 8 Tx / 2 Tx / 2 e 1 / 8 x(t )e jk 0 xt dt jk 2t 1 dt e jk 2t jk 2 1 8 18 1 j 2 sin 4 k )) jk 2 1 sin 4 k ) k 1 Y [k ] sin 2 k ) k 3 1 FS ; 2 Z [k ] sin 4 k ) sin 2 k ) 2k 2k Symmetry: We will develop using continuous, non-periodic signals. Results for other 2 cases may be obtained in a similar way. * a) Assume x(t ) real x (t ) x(t ) X * j ) x(t )e j t dt * x * (t )e jt dt x(t )e j ( ) t dt X j ) If x(t ) is real X ( j ) is conjugate symmetric Further assume x(t) even (and real) x(-t) x(t), x*(t) x(t) x*(t) x(t ) X * j ) x(t )e j ( t ) dt replace with t x( )e j d X j ) (why?) b a a x(t )dt x(t )dt b t d dt If x(t ) is real and even X ( j ) is real. Further assume x(t) odd (and real) x(-t) x(t), x*(t) x(t) x*(t) x(t ) X * j ) x(t ))e j ( t ) dt X j ) If x(t ) is real and odd X ( j ) is purely imaginary. b) Assume x(t ) imaginary x* (t ) x(t ) X * j ) x(t )e j ( )t dt X j ) If x(t ) is purely imaginary Real part of X ( j ) has odd symmetry Imaginary part of X ( j ) has even symmetry • Convolution: Applied to non-periodic signals. Let y (t ) h(t ) x(t ) h( ) x(t )d If FT x(t ) X ( j ) 1 x(t ) 2 X ( j )e j (t ) d 1 y (t ) h( ) 2 X ( j )e jt e j d d 1 2 h( )e j d X ( j )e jt d H ( j ) 1 2 j t H ( j ) X ( j ) e d FT y(t ) x(t ) h(t ) Y ( j ) X ( j ) H ( j ) Conclusion: Convolution in time domain Multiplication in freq. domain. E Example 3.31: Let x(t ) 1t sin( t ) be input to a system with impulse response h(t ) 1t sin( 2t ). Find the system output y(t ) y (t ) x(t ) h(t ) Y ( j ) X ( j ) H ( j ) From results of example 3.26, p264. 1, | | x(t ) X ( j ) 0, | | FT 1, | | 2 h(t ) H ( j ) 0, | | 2 FT 1, | | FT Y ( j ) y (t ) 1t sin( t ) 0, | | E Example 3.32: FT x(t ) X ( j ) 42 sin 2 ( ). Recall that (Example 3.25, p244) 1, | t | 1 FT 2 z (t ) sin( ) 0, | t | 1 Find x(t ). Let Z(jω) 2 sin( ). Then, X (j ) Z (j )Z (j ). Thus, x(t ) z (t ) z (t ). The same convolution properties hold for discrete-time, non-periodic signals. DTFT y[n] x[n] h[n] Y (e j ) X (e j ) H (e j ) Convolution properties for periodic (DT or CT) and periodic with non-periodic signals will be discussed in Chapter 4. • Differentiation and integration: (Section 3.11) – Applicable to continuous functions: time (t) or frequency ( or ) – FT (t, ) and DFTF () Differentiation in time: 1 x(t ) 2 d 1 x(t ) dt 2 X ( j )e jt d jt j X ( j ) e d d FT x(t ) jX ( j ) dt E Find FT of ) d at e u (t ) , a 0 dt it follows 1 e u (t ) (in - class example 3.24, p243) a j d at j FT e u (t ) dt a j at FT ) E Find x(t) if j , | | 1 X ( j ) 0, | | 1 1, | | 1 Let Z ( j ) then, 0, | | 1 X ( j ) j Z ( j ) 1 FT Z ( j ) z (t ) sin( t ) (example 3.26, p246) t d Thus, x(t ) z (t ) dt 1 1 cos(t ) 2 sin( t ) t t If x(t) is periodic, frequency-domain representation is Fourier Series (FS): x(t ) jk 0t X [ k ] e k d FS ; 0 x(t ) jk 0 X [k ] dt Differentiation in frequency: X ( j ) x(t )e jt dt d X ( j ) ( jt) x(t ) e jt dt , d d FT jtx(t ) X ( j ) d thus E Example 3.40, p275 1 t22 A Gaussian pulse is given as : g (t ) e . Find its FT. 2 d g (t ) tg (t ) () dt 1 d j G ( j ) G ( j ) Thus j d d 1 d G ( j ) G ( j ) j G ( j ) G ( j ) d j d This differential equation (it has the same mathematical form as (*), and thus the functional form of G(j) is the same as that of g(t) ) has a solution given as: G( j ) ce 2 / 2 Constant c can be determined as: g (t )dt 1 G( j 0) g (t )e jt dt | 0 c 1 Thus, 1 t22 FT 2 / 2 e e 2 Integration: – In time: applicable to FT and FS – In frequency: applicable to FT and DTFT t Let y (t ) x( )d d y (t ) x(t ) dt 1 j Y ( j ) X ( j ) Y ( j ) X ( j ) j if 0 For =0, this relationship is indeterminate. In general, 1 x( )d j X ( j ) X ( j0) ( ) t FT E Determine the Fourier transform of u(t). t u (t ) ( )d FT (t ) 1 1 U ( j ) ( j ) j FT E Problem 3.29, p279: Fund x(t), given 1 X ( j ) ( j ) j ( j 1) 1 1 1 1 X ( j ) ( j ) ( j ) j j 1 j 1 j x(t ) u (t ) e t u (t ) Review Table 3.6. Commonly used properties. d 2t x ( t ) 2 te u (t ) ). X ( j ) ? Problem 3.22(b), p271. E dt 1 FT 2t e u (t ) d 2 j FT jtx(t ) X ( j ) d 1 FT 2t te u (t ) 2 2 j ) d FT x(t ) jX ( j ) d 2 j FT 2t 2te u (t ) ) dt dt 2 j )2 • Time and frequency shift Time shift: Let z (t ) x(t t0 ) Z ( j ) z (t )e jt dt x(t t0 )e jt dt Replace t t0 with x( )e j d e jt0 Z ( j ) e jt0 X ( j ) Note: Time shift phase shift in frequency domain. Phase shift is a linear function of . Magnitude spectrum does not change. Table 3.7, p280: FT x(t t0 ) e jt 0 X ( j ) FS ; 0 x(t t0 ) e jkt0 X [ k ] DTFT x[n n0 ] e jn0 X (e j ) DTFS ; 0 x[n n0 ] e jkn0 X [k ] E Example 3.41: Find Z(j) z (t ) x(t T1 ) x(t ) X ( j ) FT 2 z (t ) Z ( j ) e FT sin( T0 ) jT1 2 sin( T0 ) (Example 3.25, p244) E Problem 3.23(a), p282: e j 4 X ( j ) . Find x(t ) 2 ( 2 j ) 1 FT 2t Z ( j ) z (t ) e u (t ) 2 j d j FT jtz(t ) Z ( j ) 2 d ( 2 j ) 1 FT 2t te u (t ) ( 2 j ) 2 j 4 e FT 2(t 4) (t 4)e u (t 4) ( 2 j ) 2 Frequency shift: FT x(t ) X ( j ) FT Z ( j ) X ( j ( )) ?? 1 j t z (t ) Z ( j ) e d 2 1 j t X ( j ( )) e d 2 1 jt jt X ( j )e d e 2 jt z (t ) e x(t ) (let ) Note: – Frequency shift time signal multiplied by a complex sinusoid. – Carrier modulation. Table 3.8, p284: FT e jt x (t ) X ( j ( )) FS ; 0 e jk0 0t x(t ) X [k k 0 ] DTFT e jn x[ n] X (e j ( ) ) DTFS ; 0 e jk0 0 n x[n] X [k k 0 ] E Example 3.42, p284: Find Z(j). e j10t , | t | z (t ) 0, | t | 1, | t | FT 2 Let x(t ) sin( ) 0, | t | z (t ) x(t )e j10t 2 X ( j ( 10)) sin(( 10) ) 10 FT E Example 3.43, p285: ) ) d 3t x(t ) e u (t ) e t u (t 2) . Find X ( j ). dt 1 FT 3t Let w(t ) e u (t ) W ( j ) 3 j v(t ) e t u (t 2) e (t 2 ) 2 j 2 u (t 2)e V ( j ) e e 2 FT j 2 j e Thus, X ( j ) jW ( j )V ( j ) e 2 (3 j )(1 j ) 1 1 j • Multiplication If z (t ), x(t ) are non - periodic, what is the FT of y (t ) x(t ) z (t ) ? 1 x(t ) 2 1 z (t ) 2 X ( jv)e jvt dv READ derivation on p291! Z ( j )e jt d y (t ) x(t ) z (t ) 1 (2 ) 2 X ( jv)Z ( j )e j ( v )t dvd Let v , fix v first d d . Then 1 y (t ) 2 1 jt X ( jv ) Z ( j ( v )) dv 2 e d Inverse FT of 1 2 X ( j )Z ( j ) FT y (t ) x(t ) z (t ) Y ( j ) 1 2 X ( j ) Z ( j ) FT Compare x(t ) z (t ) X ( j ) Z ( j ) For discrete - time signals x[n], z[n] : DTFT y[n] x[n]z[n] Y (e j ) Periodic convolution: 1 2 X (e j ) * Z (e j ) ) j - p296, CT, periodic signals: FS ; 2 / T y (t ) x(t ) z (t ) Y [k ] X [k ] Z [k ] X [k ] Z [k ] ) X (e ) * Z (e ) X e j Z e j ( ) d j X [m]Z [k m] m - p297, DT, periodic signals: DTFS ; 2 / N y[n] x[n]z[n] Y [k ] X [k ] * Z [k ] N 1 X [k ] * Z [k ] X [m]Z [k m] m 0 • Scaling Let z (t ) x(at ) Z ( j ) z (t )e jt dt x(at )e jt dt 1 x( )e j ( / a ) d a j ( / a ) d 1a x( )e 1 | a| x( )e j ( / a ) d |1a| X ( j ( / a )) a0 a0 (let at ) E Example 3.48, p300: 1 | t | 1 x(t ) 0 | t | 1 1 | t | 2 y (t ) 0 | t | 2 Find Y ( j ) y (t ) x(at ) |a 1 2 X ( j ) 2 sin( ) 2 2 Y ( j ) 2 X ( j 2 ) 2 sin( 2 ) sin( 2 ) 2 d e j 2 E Example 3.49, p301: Find x(t ) if X ( j ) j d 1 j ( / 3) 1 1 j 1 1 FT z (t ) s (3t ) Z ( j ) 3 1 j ( / 3) FT We know s(t ) e t u (t ) S ( j ) – Time scaling: – Time shift: e j 2 v(t ) 3 z (t 2) 3s (3(t 2)) 1 j ( / 3) FT d FT – Differentiation: tv(t ) j d Thus, x(t ) tv(t ) 3tz(t 2) 3ts(3(t 2)) 3te 3( t 2 ) u (3(t 2)) e j 2 1 j ( / 3) FT 1 x(at ) |a| X ( j ( / a )) FT x(t t0 ) e j t 0 X ( j ) FT d jtx(t ) d X ( j ) Note : u(3(t 2)) u(t 2). Thus, x(t ) 3te3(t 2)u(t 2) • Parseval’s relationship: 2 Energy of CT, non - periodic signal x(t ) : Wx | x(t ) | dt 1 x (t ) 2 x (t ) x(t )dt X ( j )e jt d 1 j t Wx x(t ) X ( j )e d dt 2 1 j t X ( j ) x ( t ) e dt d 2 1 X ( j ) X ( j )d 2 1 2 2 Wx | x(t ) | dt | X ( j ) | d 2 Note : a) | X ( j ) |2 : energy spectrum b) Energy in time domain energy in freq. domain Table 3.10, p304: 1 DTFT : | x[n] | 2 n 2 1 DTFS : N FS : 1 T N 1 | X ( e j ) | 2 d N 1 2 | x [ n ] | | X [ k ] | 2 n 0 T 0 k 0 | x(t ) | dt 2 | X [k ] | 2 k E Example 3.50, p304: sin( Wn) sin 2 (Wn) x[n] . Determine E x n (n) 2 n 1, W sin( Wn) DTFT j x[n] X e ) n 0, W 1 2 j 2 E x x [ n] X e ) d 2 n 1 W 1d W / W 2 • Time-bandwidth product Compression in time domain expansion in frequency domain Bandwidth: The extent of the signal’s significant contents. It is in general a vague definition as “significant” is not mathematically defined. In practice, definitions of bandwidth include – absolute bandwidth – x% bandwidth – first-null bandwidth. If we define 1/ 2 t x ( t ) dt : RMS duration of an energy signal Td 2 x ( t ) dt 1/ 2 2 X ( j ) 2 d : RMS bandwidth, then Bw 2 X ( j ) d 2 2 Td Bw 1 / 2 • Duality f (t ) F j ) FT F jt ) 2f ( ) FT E Example 3.52, p308: Find X ( j ) if x(t ) 1 1 jt 1 We know f (t ) e u (t ) F ( j ) 1 j 1 FT Duality F ( jt ) 2f ( ) 1 jt t FT X ( j ) 2f ( ) 2e u ( ) Check 1 x(t) 2 1 2 0 E Problem 3.44, p309: Find x(t ) if X ( j ) u ( ) 0 X ( j )e jt d 2e e jt d e (1 jt ) 1 d 1 jt X ( j ) u ( ) 1 X ( jt ) u (t ) ( ) 2x( ) j FT 1 1 x(t ) ((t )) j (t ) 2 1 1 (t ) 2jt 2 Table 3.11, p311: DTFS : t FT x( )d 1 X ( j ) X ( j 0) ( ) j DTFS ; 2 / N x[n] X [k ] DTFS ; 2 / N X [ n ] N1 x[k ] ) DTFT x[n] X e j DTFT and FS : FS ;1 jt X e x[k ] DTFT and FS do not stay in their own class! )
© Copyright 2026 Paperzz