z = x 2 − 2xy + y 2 − 2 at x = 1, y = −1, z = 2 Let: u= Compute ux1 and ux4 q x12 + x22 + x32 + x42 Let: u= q x12 + x22 + x32 + x42 Compute ux1 and ux4 SOLUTION: 1 ux1 = (x12 + x22 + x32 + x42 )−1/2 (2x1 ) = 2 Let: u= q x12 + x22 + x32 + x42 Compute ux1 and ux4 SOLUTION: 1 x1 ux1 = (x12 + x22 + x32 + x42 )−1/2 (2x1 ) = q 2 x12 + x22 + x32 + x42 And ux4 is found in a similar way: Let: u= q x12 + x22 + x32 + x42 Compute ux1 and ux4 SOLUTION: 1 x1 ux1 = (x12 + x22 + x32 + x42 )−1/2 (2x1 ) = q 2 x12 + x22 + x32 + x42 And ux4 is found in a similar way: ux4 = Let: u= q x12 + x22 + x32 + x42 Compute ux1 and ux4 SOLUTION: 1 x1 ux1 = (x12 + x22 + x32 + x42 )−1/2 (2x1 ) = q 2 x12 + x22 + x32 + x42 And ux4 is found in a similar way: x4 ux4 = q x12 + x22 + x32 + x42 (88) The paraboloid z = 6 − x − x 2 − 2y 2 intersects the plane x = 1 in a parabola. Find the parametric equations for the tangent line to this parabola at the point (1, 2, −4), and graph. (88) The paraboloid z = 6 − x − x 2 − 2y 2 intersects the plane x = 1 in a parabola. Find the parametric equations for the tangent line to this parabola at the point (1, 2, −4), and graph. SOLUTION: The parabola is found by setting x = 1 z = 4 − 2y 2 ⇒ zy = −4y The derivative at y = 2 is −8. The tangent line therefore has direction (88) The paraboloid z = 6 − x − x 2 − 2y 2 intersects the plane x = 1 in a parabola. Find the parametric equations for the tangent line to this parabola at the point (1, 2, −4), and graph. SOLUTION: The parabola is found by setting x = 1 z = 4 − 2y 2 ⇒ zy = −4y The derivative at y = 2 is −8. The tangent line therefore has direction (we’re not moving in x, just in y ): h0, 1, −8i, and the tangent line is therefore: (88) The paraboloid z = 6 − x − x 2 − 2y 2 intersects the plane x = 1 in a parabola. Find the parametric equations for the tangent line to this parabola at the point (1, 2, −4), and graph. SOLUTION: The parabola is found by setting x = 1 z = 4 − 2y 2 ⇒ zy = −4y The derivative at y = 2 is −8. The tangent line therefore has direction (we’re not moving in x, just in y ): h0, 1, −8i, and the tangent line is therefore: x =1 y =2+t z = −4 − 8t A Special Function ( 3 x y −xy 3 if (x, y ) 6= (0, 0) x 2 +y 2 f (x, y ) = 0 if (x, y ) = (0, 0) A Special Function ( 3 x y −xy 3 if (x, y ) 6= (0, 0) x 2 +y 2 f (x, y ) = 0 if (x, y ) = (0, 0) fx (x, y ) = y (x 4 + 4x 2 y 2 − y 4 ) (x 2 + y 2 )2 fy (x, y ) = x(x 4 − 4x 2 y 2 − y 4 ) (x 2 + y 2 )2 Recall: If (x, y ) 6= (0, 0), then f (x, y ) = x 3 y − xy 3 x2 + y2 Does fx (0, 0) exist? (Use the definition!) fx (0, 0) = lim h→0 f (0, h) − f (0, 0) = h Recall: If (x, y ) 6= (0, 0), then f (x, y ) = x 3 y − xy 3 x2 + y2 Does fx (0, 0) exist? (Use the definition!) fx (0, 0) = lim h→0 0−0 f (0, h) − f (0, 0) =0 = lim h→0 h h Recall: If (x, y ) 6= (0, 0), then f (x, y ) = x 3 y − xy 3 x2 + y2 Does fx (0, 0) exist? (Use the definition!) fx (0, 0) = lim h→0 Similarly, fy (0, 0) = 0. 0−0 f (0, h) − f (0, 0) =0 = lim h→0 h h If (x, y ) 6= (0, 0), then fxy = x 6 + 9x 4 y 2 − 9x 2 y 4 − y 6 = fyx (x 2 + y 2 )3 Continuous at the origin? If (x, y ) 6= (0, 0), then fxy = x 6 + 9x 4 y 2 − 9x 2 y 4 − y 6 = fyx (x 2 + y 2 )3 Continuous at the origin? Reminder- If (x, y ) 6= (0, 0), then: fx (x, y ) = y (x 4 + 4x 2 y 2 − y 4 ) (x 2 + y 2 )2 Compute, using the definition: fxy (0, 0) = fy (x, y ) = x(x 4 − 4x 2 y 2 − y 4 ) (x 2 + y 2 )2 Reminder- If (x, y ) 6= (0, 0), then: fx (x, y ) = y (x 4 + 4x 2 y 2 − y 4 ) (x 2 + y 2 )2 fy (x, y ) = Compute, using the definition: fx (0, h) − fx (0, 0) = h→0 h fxy (0, 0) = lim x(x 4 − 4x 2 y 2 − y 4 ) (x 2 + y 2 )2 Reminder- If (x, y ) 6= (0, 0), then: fx (x, y ) = y (x 4 + 4x 2 y 2 − y 4 ) (x 2 + y 2 )2 fy (x, y ) = x(x 4 − 4x 2 y 2 − y 4 ) (x 2 + y 2 )2 Compute, using the definition: fx (0, h) − fx (0, 0) −h5 = lim 5 = −1 h→0 h→0 h h fxy (0, 0) = lim fyx (0, 0) = Reminder- If (x, y ) 6= (0, 0), then: fx (x, y ) = y (x 4 + 4x 2 y 2 − y 4 ) (x 2 + y 2 )2 fy (x, y ) = x(x 4 − 4x 2 y 2 − y 4 ) (x 2 + y 2 )2 Compute, using the definition: fx (0, h) − fx (0, 0) −h5 = lim 5 = −1 h→0 h→0 h h fxy (0, 0) = lim fyx (0, 0) = lim h→0 fx (h, 0) − fx (0, 0) = h Reminder- If (x, y ) 6= (0, 0), then: fx (x, y ) = y (x 4 + 4x 2 y 2 − y 4 ) (x 2 + y 2 )2 fy (x, y ) = x(x 4 − 4x 2 y 2 − y 4 ) (x 2 + y 2 )2 Compute, using the definition: fx (0, h) − fx (0, 0) −h5 = lim 5 = −1 h→0 h→0 h h fxy (0, 0) = lim fx (h, 0) − fx (0, 0) h5 = lim 5 = h→0 h→0 h h fyx (0, 0) = lim Reminder- If (x, y ) 6= (0, 0), then: fx (x, y ) = y (x 4 + 4x 2 y 2 − y 4 ) (x 2 + y 2 )2 fy (x, y ) = x(x 4 − 4x 2 y 2 − y 4 ) (x 2 + y 2 )2 Compute, using the definition: fx (0, h) − fx (0, 0) −h5 = lim 5 = −1 h→0 h→0 h h fxy (0, 0) = lim fx (h, 0) − fx (0, 0) h5 = lim 5 = 1 h→0 h→0 h h fyx (0, 0) = lim Reminder- If (x, y ) 6= (0, 0), then: fx (x, y ) = y (x 4 + 4x 2 y 2 − y 4 ) (x 2 + y 2 )2 fy (x, y ) = x(x 4 − 4x 2 y 2 − y 4 ) (x 2 + y 2 )2 Compute, using the definition: fx (0, h) − fx (0, 0) −h5 = lim 5 = −1 h→0 h→0 h h fxy (0, 0) = lim fx (h, 0) − fx (0, 0) h5 = lim 5 = 1 h→0 h→0 h h fyx (0, 0) = lim Therefore, fxy (0, 0) 6= fyx (0, 0) (even though they are equal everywhere else!)
© Copyright 2026 Paperzz