Curvature Motion for Union of Balls Thomas Lewiner♥♠, Cynthia Ferreira♥, Marcos Craizer♥ and Ralph Teixeira♣ ♥ Department of Mathematics — PUC-Rio ♠ Géométrica Project — INRIA Sophia Antipolis ♣ FGV -Rio Morphological Motions T. Lewiner, C. Fereira, M. Craizer and R. Teixeira - Curvature Motion for Union of Balls 2/21 Expected Properties of Motion No self-intersection No singularities No disconnection Convexification Simplification Curvature Motion T. Lewiner, C. Fereira, M. Craizer and R. Teixeira - Curvature Motion for Union of Balls 3/21 Curvature Motion @Q ( s;t ) @t T. Lewiner, C. Fereira, M. Craizer and R. Teixeira = K (s; t) ¢N (s; t) - Curvature Motion for Union of Balls 4/21 Union of Balls Original model Modelling and approximation Curve discretisation (medial axis) T. Lewiner, C. Fereira, M. Craizer and R. Teixeira - Curvature Motion for Union of Balls 5/21 Contributions Explicit curvature motion for union of balls Sampling conditions on the union of balls Derivative approximations for the union of balls T. Lewiner, C. Fereira, M. Craizer and R. Teixeira - Curvature Motion for Union of Balls 6/21 Summary Medial Axis Curvature Motion from the Medial Axis Curvature Motion for Union of Balls Implementation Issues Results T. Lewiner, C. Fereira, M. Craizer and R. Teixeira - Curvature Motion for Union of Balls 7/21 Medial Axis Inner symmetries of a shape Singularities of the distance function Captures the topology of the shape T. Lewiner, C. Fereira, M. Craizer and R. Teixeira - Curvature Motion for Union of Balls 8/21 Medial Axis of a Union of Balls Classical Algorithmic Geometry (Amenta et al., CGTA 2001) Medial axis inside the alpha-shape T. Lewiner, C. Fereira, M. Craizer and R. Teixeira - Curvature Motion for Union of Balls 9/21 Points of the Medial Axis End Points Bifurcation Points Regular Points T. Lewiner, C. Fereira, M. Craizer and R. Teixeira - Curvature Motion for Union of Balls 10/21 Balls of the Union T. Lewiner, C. Fereira, M. Craizer and R. Teixeira - Curvature Motion for Union of Balls 11/21 Curvature Motion from Medial Axis: regular points @Q ( s;t ) @t = K (s; t) ¢N (s; t) 8 > > < Mt = > > : r = t K ( 1¡ r v 2 ) N ( 1¡ r v 2 ¡ r r v v ) 2 ¡ r 2 K 2 ( 1¡ r v 2 ) r K 2 ( 1¡ r v 2 ) + r v ( 1¡ r v 2 ¡ r r v v ) ( 1¡ r v 2 ¡ r r v v ) 2 ¡ r 2 K 2 ( 1¡ r v 2 ) T. Lewiner, C. Fereira, M. Craizer and R. Teixeira - Curvature Motion for Union of Balls 12/21 8 > > < Mt = Regular balls > > : r = t K ( 1¡ r v 2 ) N ( 1¡ r v 2 ¡ r r v v ) 2 ¡ r 2 K 2 ( 1¡ r v 2 ) r K 2 ( 1¡ r v 2 ) + r v ( 1¡ r v 2 ¡ r r v v ) ( 1¡ r v 2 ¡ r r v v ) 2 ¡ r 2 K 2 (1¡ r v 2 ) 1st and 2nd derivatives on the medial axis: ) [Lewiner et al., Sibgrapi 2004] T ; N ; K ; r v ; r vv T. Lewiner, C. Fereira, M. Craizer and R. Teixeira - Curvature Motion for Union of Balls 13/21 Clean end balls ½ M t = ¡ K ss r t = ¡ K ss ¡ K Ellipse 2 circles ) of K ;K ss T. Lewiner, C. Fereira, M. Craizer and R. Teixeira - Curvature Motion for Union of Balls 14/21 Noisy end balls ½ M t = ¡ K ss r t = ¡ K ss ¡ K Ellipse tangent to the circles ) K ; K ss T. Lewiner, C. Fereira, M. Craizer and R. Teixeira - Curvature Motion for Union of Balls 15/21 Bifurcation balls )Estimate the symmetry set mean evolution of three regular points T. Lewiner, C. Fereira, M. Craizer and R. Teixeira - Curvature Motion for Union of Balls 16/21 Sampling Conditions 1 min(r; r 0) · kc ¡ c0k · min(r; r 0) 20 Adjacent B (c; rballs: ) Over-sampling (rarefaction) : add B ball( c+ c 0 ; r + r ) 2 B (c0; r 0) 2 Sub-sampling (numerical) : replace c+ c 0by B (balls ; r+r ) 2 2 T. Lewiner, C. Fereira, M. Craizer and R. Teixeira - Curvature Motion for Union of Balls 17/21 Numerical Issues Inner balls $ Bifurcation regular topological change Avoiding non-existent holes Numerical validation : fallback to end ball case T. Lewiner, C. Fereira, M. Craizer and R. Teixeira - Curvature Motion for Union of Balls 18/21 Comparison with Megawave [Craizer et al., Math Imaging & Vision, 2004] T. Lewiner, C. Fereira, M. Craizer and R. Teixeira - Curvature Motion for Union of Balls 19/21 Reaction-Diffusion Scale-Space Qt (s; t) = (® + ¯K (s; t)) N (s; t) T. Lewiner, C. Fereira, M. Craizer and R. Teixeira - Curvature Motion for Union of Balls 20/21 Future works: 3D? T. Lewiner, C. Fereira, M. Craizer and R. Teixeira - Curvature Motion for Union of Balls 21/21 Thank you!
© Copyright 2026 Paperzz