Iterative Deepening A* Iterative Deepening A* Algorithm A* has memory demands that increase exponentially with the depth of the goal node (unless our estimates are perfect). • In the first iteration, we determine a “cost cut-off” f’(n0) = g’(n0) + h’(n0) = h’(n0), where n0 is the start node. You remember that we improved the space efficiency of the breadth-first search algorithm by applying iterative deepening. • We expand nodes using the depth-first algorithm and backtrack whenever f’(n) for an expanded node n exceeds the cut-off value. Can we do a similar thing for the Algorithm A* ? Sure! • If this search does not succeed, determine the lowest f’-value among the nodes that were visited but not expanded. • Use this f’-value as the new cut-off value and do another depth-first search. • Repeat this procedure until a goal node is found. February 23, 2016 Introduction to Artificial Intelligence Lecture 9: Two-Player Games I 1 February 23, 2016 Introduction to Artificial Intelligence Lecture 9: Two-Player Games I 2 Two-Player Games with Complete Trees Let us now investigate… We can use search algorithms to write “intelligent” programs that play games against a human opponent. Just consider this extremely simple (and not very exciting) game: Two-Player Games • At the beginning of the game, there are seven coins on a table. • Player 1 makes the first move, then player 2, then player 1 again, and so on. • One move consists of removing 1, 2, or 3 coins. • The player who removes all remaining coins wins. February 23, 2016 Introduction to Artificial Intelligence Lecture 9: Two-Player Games I 3 February 23, 2016 Two-Player Games with Complete Trees C The computer wants to make decisions that guarantee its victory (in this simple game). H The underlying assumption is that the human always finds the optimal move. C 7 1 H C 5 1 2 3 3 2 3 2 1 3 1 3 2 1 1 H H H 1 2 2 3 3 2 2 3 2 3 4 1 4 2 3 2 4 1 5 5 2 4 1 3 2 6 1 H Introduction to Artificial Intelligence Lecture 9: Two-Player Games I 4 Two-Player Games with Complete Trees Let us assume that the computer has the first move. Then, the game can be described as a series of decisions, where the first decision is made by the computer, the second one by the human, the third one by the computer, and so on, until all coins are gone. February 23, 2016 Introduction to Artificial Intelligence Lecture 9: Two-Player Games I 1 3 3 2 1 1 C C C 1 H H H 1 C C C February 23, 2016 Introduction to Artificial Intelligence Lecture 9: Two-Player Games I 6 1 Two-Player Games with Complete Trees Two-Player Games with Complete Trees So the computer will start the game by taking three coins and is guaranteed to win the game. C (max) The most practical way of implementing such an algorithm is the Minimax procedure: H (min) C (max) H (min) 41 3 -1 2 -1 1-1 3 -1 2-1 1-1 C (max) 3 1 21 11 -1 H -1 H -1 H -1 H -1 H -1 H H (min) • Call the two players MIN and MAX. • Mark each leaf of the search tree with -1, if it shows a victory of MIN, and with 1, if it shows a victory of MAX. • Propagate these values up the tree using the rules: – If the parent state is a MAX node, give it the maximum value among its children. – If the parent state is a MIN node, give it the minimum value among its children. February 23, 2016 Introduction to Artificial Intelligence Lecture 9: Two-Player Games I 7 71 5 -1 6 -1 51 4-1 41 31 21 11 4 -1 C 1 C 1 C 1 C C 1 1 C 1 February 23, 2016 Two-Player Games with Complete Trees Introduction to Artificial Intelligence Lecture 9: Two-Player Games I 8 Two-Player Games The previous example shows how we can use the Minimax procedure to determine the computer’s best move. Therefore, we need to define a static evaluation function e(p) that tells the computer how favorable the current game position p is from its perspective. It also shows how we can apply depth-first search and a variant of backtracking to prune the search tree. In other words, e(p) will assume large values if a position is likely to result in a win for the computer, and low values if it predicts its defeat. Before we formalize the idea for pruning, let us move on to more interesting games. In any given situation, the computer will make a move that guarantees a maximum value for e(p) after a certain number of moves. For such games, it is impossible to check every possible sequence of moves. The computer player then only looks ahead a certain number of moves and estimates the chance of winning after each possible sequence. February 23, 2016 Introduction to Artificial Intelligence Lecture 9: Two-Player Games I 9 For this purpose, we can use the Minimax procedure with a specific maximum search depth (ply-depth k for k moves of each player). February 23, 2016 Introduction to Artificial Intelligence Lecture 9: Two-Player Games I Two-Player Games Two-Player Games For example, let us consider Tic-Tac-Toe (although it would still be possible to search the complete game tree for this game). What would be a suitable evaluation function for this game? We could use the number of lines that are still open for the computer (X) minus the ones that are still open for its opponent (O). Introduction to Artificial Intelligence Lecture 9: Two-Player Games I 11 X O O X O X X O X e(p) = 8 – 8 = 0 e(p) = 6 – 2 = 4 e(p) = 2 – 2 = 0 shows the weakness of this e(p) How about these? O O X X X X O O O e(p) = ∞ e(p) = - ∞ X February 23, 2016 10 February 23, 2016 X Introduction to Artificial Intelligence Lecture 9: Two-Player Games I 12 2 Two-Player Games The Alpha-Beta Procedure Now let us specify how to prune the Minimax tree in the case of a static evaluation function. • Use two variables alpha (associated with MAX nodes) and beta (associated with MIN nodes). • These variables contain the best (highest or lowest, resp.) e(p) value at a node p that has been found so far. • Notice that alpha can never decrease, and beta can never increase. February 23, 2016 Introduction to Artificial Intelligence Lecture 9: Two-Player Games I 13 February 23, 2016 The Alpha-Beta Procedure Introduction to Artificial Intelligence Lecture 9: Two-Player Games I 14 The Alpha-Beta Procedure Example: There are two rules for terminating search: max • Search can be stopped below any MIN node having a beta value less than or equal to the alpha value of any of its MAX ancestors. min • Search can be stopped below any MAX node having an alpha value greater than or equal to the beta value of any of its MIN ancestors. max Alpha-beta pruning thus expresses a relation between nodes at level n and level n+2 under which entire subtrees rooted at level n+1 can be eliminated from consideration. February 23, 2016 Introduction to Artificial Intelligence Lecture 9: Two-Player Games I 15 min February 23, 2016 The Alpha-Beta Procedure Example: Example: max min min max max min min β=4 4 5 4 February 23, 2016 16 The Alpha-Beta Procedure max β=4 Introduction to Artificial Intelligence Lecture 9: Two-Player Games I Introduction to Artificial Intelligence Lecture 9: Two-Player Games I 17 February 23, 2016 Introduction to Artificial Intelligence Lecture 9: Two-Player Games I 18 3 The Alpha-Beta Procedure Example: The Alpha-Beta Procedure max Example: max min max α=3 min β=3 4 5 3 min max α=3 β=3 4 5 3 1 February 23, 2016 Introduction to Artificial Intelligence Lecture 9: Two-Player Games I 19 February 23, 2016 The Alpha-Beta Procedure Example: max β=1 4 5 3 1 Example: min α=3 min β=8 Introduction to Artificial Intelligence Lecture 9: Two-Player Games I 21 max β=3 β=1 α=3 β=3 β=1 max 4 5 3 1 February 23, 2016 min β=6 8 6 February 23, 2016 8 6 7 23 α=3 22 α=3 β=3 max α=6 β=1 February 23, 2016 max min β=3 4 5 3 1 Introduction to Artificial Intelligence Lecture 9: Two-Player Games I Introduction to Artificial Intelligence Lecture 9: Two-Player Games I Example: min α=6 min β=6 The Alpha-Beta Procedure max β=3 min α=3 The Alpha-Beta Procedure Example: 20 max β=3 4 5 3 1 8 February 23, 2016 Introduction to Artificial Intelligence Lecture 9: Two-Player Games I The Alpha-Beta Procedure max β=3 β=3 min β=1 min β=6 8 6 7 Introduction to Artificial Intelligence Lecture 9: Two-Player Games I 24 4 The Alpha-Beta Procedure α=3 Example: α=3 β=3 α=6 β=1 4 5 3 1 max Propagated from grandparent – no values below 3 can influence MAX’s decision any more. β=3 min β=2 8 6 7 February 23, 2016 max 25 α=3 Example: β=3 β=1 α=3 β=3 β=1 4 5 3 1 β=6 β=2 8 6 7 February 23, 2016 max α=3 2 min β=4 5 4 27 α=3 Example: β=3 α=3 β=3 α=6 β=1 4 5 3 1 February 23, 2016 β=6 8 6 7 max α=4 β=2 2 β=4 β=6 5 4 4 Introduction to Artificial Intelligence Lecture 9: Two-Player Games I max β=1 min β=4 max α=4 β=6 β=2 8 6 7 February 23, 2016 2 min β=4 5 4 4 Introduction to Artificial Intelligence Lecture 9: Two-Player Games I 28 min 29 max β=3 α=3 β=3 β=1 February 23, 2016 min β=4 α=6 4 5 3 1 6 α=3 Example: min β=4 26 The Alpha-Beta Procedure max β=3 5 α=3 α=6 The Alpha-Beta Procedure α=3 2 min β=5 Introduction to Artificial Intelligence Lecture 9: Two-Player Games I β=3 4 5 3 1 Introduction to Artificial Intelligence Lecture 9: Two-Player Games I β=2 8 6 7 Example: min α=6 β=6 February 23, 2016 max α=3 The Alpha-Beta Procedure max β=3 min α=6 The Alpha-Beta Procedure α=3 max β=3 4 5 3 1 2 Introduction to Artificial Intelligence Lecture 9: Two-Player Games I α=3 Example: min α=3 β=6 The Alpha-Beta Procedure β=6 8 6 7 max α=4 β=2 2 β=4 β=6 5 4 4 Introduction to Artificial Intelligence Lecture 9: Two-Player Games I min 6 7 30 5 The Alpha-Beta Procedure α=4 Example: max β=3 α=3 β=3 β=1 4 5 3 1 February 23, 2016 β=6 8 6 7 α=4 β=2 2 α=6 β=4 β=6 5 4 4 Introduction to Artificial Intelligence Lecture 9: Two-Player Games I max min 31 Done! β=3 α=3 β=3 β=1 February 23, 2016 β=6 8 6 7 α=4 β=2 2 α=6 β=4 β=6 5 4 4 Introduction to Artificial Intelligence Lecture 9: Two-Player Games I max min β=4 α=6 4 5 3 1 6 7 7 α=4 Example: min β=4 α=6 The Alpha-Beta Procedure max min 6 7 7 32 6
© Copyright 2026 Paperzz