MathematicalInductionProofTemplate ∀n ∈ ℕ (𝑃(𝑛)) THEOREM: “Foreveryn ∈ ℕ, 𝑃(𝑛) Basis:𝑃(1) assertsthat Note:Ifappropriate, useP(0),P(2)orother valueinstead. whichistruebecause Stateandprove𝑃(1) PROOF:Bymathematicalinduction. Inductivestep:Assumeforanarbitrary𝑘 ∈ ℕ,𝑃(𝑘)istrue,i.e.,namely: State𝑃(𝑘) (inductive hypothesis) Prove 𝑃 (𝑘) ⇒ 𝑃(𝑘 + 1) State 𝑃(𝑘 + 1) Alldone:wrap upproof Wewillnowshowthat𝑃 𝑘 + 1 isalsotrue,i.e.: Proofofinductivestep: Wethushavethat𝑃(1)and∀𝑘 ∈ ℕ, 𝑃 𝑘 → 𝑃 𝑘 + 1 ,sobytheprincipleof mathematicalinduction,itfollowsthat𝑃(𝑛)istrueforallnaturalnumbers𝑛. Q.E.D. Stepsofamathematicalinductionproof: 1)statethetheorem,whichisthepropositionP(n) 2)showthatP(basecase)istrue.BasecaseisusuallyP(1),butsometimesP(0)orP2)orothervalueisappropriate. 3)statetheinductivehypothesis(substitutekforn) 4)statewhatmustbeproved(substitutek+1forn) 5)statethatyouarebeginningyourproofoftheinductivestep,andproceedtomanipulatetheinductivehypothesis (whichweassumeistrue)tofindalinkbetweentheinductivehypothesisandthestatementtobeproven.Always stateexplicitlywhereyouareinvokingtheinductivehypothesis. 6)finishyourproofbyinvokingtheprincipleofmathematicalinductionthatallowsyoutoinferthat𝑃 𝑛 istruefor allnaturalnumbers. Stuckontheproofoftheinductivestep?Dosomeexamplesforinspiration! Statethefollowingandtrytofigureoutwhytheyaretrue.Thenseeifapatternemerges thatyoucangeneralize. Trysomemorebasecases: 𝑃(2) 𝑃(3) 𝑃(4) Ifit’snotyetclearwhatmakestheinductivesteptrue(i.e.,whatisitintheinductive hypothesis𝑃 𝑘 thatcausestheconclusion𝑃(𝑘 + 1)toalsobetrue?),trysomelarger consecutivenumbers.Asyouworktheseexamples,seeifyoucanmakeuseofthe inductivehypothesisinprovingtheconclusion(ratherthanprovingitindependently). Notethatusingexampleswithlargenumberssometimesforcesyoutotakeashortcut;that shortcutisoftenthekeytoprovingtheinductivestep. 𝑃 8 ⇒ 𝑃(9) 𝑃 25 ⇒ 𝑃(26) 𝑃 1,000,000 ⇒ 𝑃(1,000,001)
© Copyright 2026 Paperzz