Algorithmically generated implicit dierence schemes for KdV equation and their numerical behaviour Yu. A. Blinkov, V. P. Gerdt and K. V. Marinov • Introduction • In this paper we consider the Korteveg-de Vries (KdV) equation in the following form (cf. [1], Eq. 1.18) ∂t u + αu ∂x u + β ∂x3 u = 0 (1) where u := u(x, t) and α, β ∈ R. Numerical solving of Eq. (1) by the nite dierence method was intensively studied in the literature (see book [1] and its bibliography). In so doing, a number of explicit and implicit dierence schemes were derived and used for numerical construction of various solutions to (1). In our talk we consider the Cartesian grid with spacings τ := tn+1 − tn and h := xj+1 − xj and present two new implicit schemes for Eq. (1) with O(τ 2 , h2 ) and O(τ 2 , h2 ) approximations. The schemes were generated by our algorithmic approach [2] which is based on combination of the methods of nite volumes, numerical integration and dierence elimination by means of Gr obner bases. Then we compare, on the exact soliton solution, numerical behavior of these schemes with that of some classical schemes of same order of approximation used in the literature and show that our schemes provide substantially better numerical accuracy. • Classical schemes with O(τ 2 , h2 ) approximation • The explicit scheme [1], Eq.1.80 un+1 =un−1 − i i βτ ατ n n u u − uni−1 − 3 uni+2 − 2uni+1 + 2uni−1 − uni−2 . h i i+1 h (2) where the standard notation unj := u(tn , xj ) for the grid function is used. This scheme is stable for 2h3 ∼ h3 τ≤ √ = 0.384 . β 3 3β The work was partially supported by the grant No.16-01-00080 from the Russian Foundation for Basic Research. 2 Yu. A. Blinkov, V. P. Gerdt and K. V. Marinov The implicit scheme [1], Eq.1.96 un+1 − unj α n n+1 j n+1 + uj uj+1 − un+1 unj+1 − unj−1 + j−1 + uj τ 4h β n+1 n+1 n+1 + 3 un+1 j+2 − 2uj+1 + 2uj−1 − uj−2 + 4h + unj+2 − 2un+1 + 2unj−1 − unj−2 = 0 . j • Classical Eq.1.82) (3) schemes with O(τ 2 , h4 ) approximation • The explicit scheme ( [1], un+1 =un−1 − i i − ατ n n u u − 8uni+1 + 8uni−1 − uni−2 6h i i+2 (4) βτ uni+3 − 8uni+2 + 13uni+1 − 13uni−1 + 8uni−2 − uni−3 3 4h whose stability condition is given by τ≤ 108h3 h3 ∼ p √ = 0.216 . β (43 + 7 73) 10 73 − 62β √ The implicit scheme [1], Eq.1.84 un+1 − unj α n n+1 j n+1 n+1 = uj uj+2 − 8un+1 j+1 + 8uj−1 − uj−2 + τ 4h + un+1 unj+2 − 8unj+1 + 8unj−1 − unj−2 + j β + 3 4h un+1 j+3 unj+3 − − 8un+1 j+2 8unj+2 + + 13un+1 j+1 13unj+1 − − 13un+1 j−1 13unj−1 + + (5) 8un+1 j−2 8unj−2 − − un+1 j−3 unj−3 + . • A new scheme with O(τ 2 , h2 ) approximation • It is obtained by the straightforward extension of the approach of paper [3] to equation (1). First, we convert (1) into the integral form I α − u2 − βuxx dt + u dx = 0 (6) 2 Γ valid for any simply connected integration contour Γ. Second, we chose the rectangular integration contour shown in Fig. stencil as a "control volume". Then we n+1 n j Figure 1. j+1 j+2 First integration contour for Eq. (6). Algebraically generated schemes for KdV add to (6) the integral relations Z xj+1 Z ux dx = u(t, xj+1 ) − u(t, xj ), xj 3 xj+2 xj uxx dx = ux (t, xj+2 ) − ux (t, xj ). (7) To approximate the contour integral, we apply the trapezoidal rule. For numerical approximations of the integral relations we apply the trapezoidal rule for the integration of ux and the midpoint rule for the integration of uxx . Thereby, Eqs. (6) and (7) take the form h α n n+1 n n+1 u2 j + u2 j − u2 j+2 − u2 j+2 − − 2 τ n+1 − β uxx nj + uxx n+1 − uxx nj+2 − uxx n+1 · + uj+1 − unj+1 · 2h = 0, (8) j j+2 2 n h n n n n ux j+1 + ux j · = uj+1 − uj , uxx j+1 · 2h = ux nj+2 − ux nj . 2 To use linear dierence elimination of ux and uxx from system (8), and hence the Maple package LDA (Linear Dierence Algebra) [4], we introduce the new function α F := u2 and chose an elimination ranking such that u F ux uxx . Then 2 computation of a dierenceGr obner basis of the ideal generated by the left-hand sides of dierence polynomials in (8) and extraction from the basis an equation that does not contains ux and uxx yields the following dierence scheme n i un+1 − unj α h 2 n+1 n+1 n j + u j+1 − u2 j−1 + u2 j+1 − u2 j−1 + τ 8h β n+1 (9) n+1 n+1 + 3 uj+2 − 2un+1 j+1 + 2uj−1 − uj−2 + 4h + unj+2 − 2un+1 + 2unj−1 − unj−2 = 0. j This scheme is an analog of the famous Crank-Nicolson scheme for the heat equation. • A new scheme with O(τ 2 , h2 ) approximation • Choose now the integration contour Γ in (6) shown in Fig. 2 with the indentation h/4 along to the x−direction. n+1 n j Figure 2. j+1 j+2 j+3 j+4 Second integration contour for Eq. (6). Using at a fractional point relations fj+2 − fj 1 fj+5/4 ≈ fj+1 + · = (fj+2 + 8fj+1 − fj )/8, 2h 4h fj+4 − fj+2 1 fj+11/4 ≈ fj+3 − · = (−fj+4 + 8fj+3 + fj+2 )/8. 2h 4h (10) 4 Yu. A. Blinkov, V. P. Gerdt and K. V. Marinov we rewrite (6), (7) in the following form h α n n n n+1 n+1 n+1 (−u2 j + 8u2 j+1 + u2 j+2 )/8 + (−u2 j + 8u2 j+1 + u2 j+2 )/8 − − 2 n n n n+1 n+1 n+1 − (u2 j+2 + 8u2 j+3 − u2 j+4 )/8 − (u2 j+2 + 8u2 j+3 − u2 j+4 )/8 − n+1 − β (−uxx nj + 8uxx nj+1 + uxx nj+2 )/8 + (−uxx n+1 + 8uxx n+1 j j+1 + uxx j+2 )/8 − τ n+1 n+1 − (uxx nj+2 + 8uxx nj+3 − uxx nj+4 )/8 − (uxx n+1 · + j+2 + 8uxx j+3 − uxx j+4 )/8 2 n+1 3h n + uj+1 − uj+2 · = 0. n h 2 ux j+1 + ux nj · = unj+1 − unj , uxx nj+1 · 2h = ux nj+2 − ux nj . (11) 2 Elimination the grid functions ux and uxx from (11) gives the dierence scheme ujn+1 − unj α h 2 n+1 n+1 n+1 n+1 u j+2 − 8u2 j+1 + 8u2 j−1 − u2 j−2 + − τ i 48hn n n n + u2 j+2 − 8u2 j+1 + 8u2 j−1 − u2 j−2 + (12) β n+1 n+1 n+1 n+1 n+1 − uj+3 − 8un+1 j+2 + 13uj+1 − 13uj−1 + 8uj−2 − uj−3 + 16h3 unj+3 − 8unj+2 + 13unj+1 − 13unj−1 + 8unj−2 − unj−3 = 0 Numerical results Our numerical analysis of schemes (2)(5), (9) and (12) was done with the Python package SciPy (http:\\scipy.org). as a benchmark, we used the exact one-soliton solution to (1) 2k12 u(x, t) = cosh(k1 (x − 4k12 t))2 with α = 6, β = 1 and k1 = 0.4. In so doing, we xed h = 0.25 and considered the solution in interval −50 ≤ x ≤ 50 with periodic boundary conditions (cf. [1], p.49). The numerical inaccuracy was estimated by the Frobenius norm (kAkF ). For the implicit schemes (9) and (12) we applied linearization 2 2 vk+1 = vk+1 − vk2 + vk2 = (vk+1 − vk )(vk+1 + vk ) + vk2 ≈ vk+1 · 2vk − vk2 . References [1] V. Yu. Belashov and S. V. Vladimirov: Solitary Waves in Dispersive Complex Media: Theory, Simulation, Applications. Springer Series in Solid-State Sciences, Vol. 149, Springer-Verlag, Berlin (2005). [2] V. P. Gerdt, Yu. A. Blinkov and V. V. Mozzhilkin: Grobner Bases and Generation of Dierence Schemes for Partial Dierential Equations. Symmetry, Integrability and Geometry: Methods and Applications, 2:26, 2006. arXiv:math.RA/0605334 Algebraically generated schemes for KdV 5 101 (1.80) p.42 explicit O(h2 ) (1.82) p.43 explicit O(h4 ) (1.84) p.44 implicit O(h4 ) (1.96) p.47 implicit O(h2 ) 100 наша implicit O(h2 ) наша implicit O(h4 ) 10−1 10−2 10−3 10−4 10−5 0 20 40 Figure 3. 60 80 100 120 140 160 Dynamics of numerical error [3] V. P. Gerdt, Yu. A. Blinkov and K. B. Marinov: Computer Algebra Based Discretization of Quaslinear Evolution Equations. Programming and Computer Software, to appear. [4] V. P. Gerdt and D. Robertz: Computation of Dierence Grobner Bases. Computer Science Journal of Moldova, 20(2), (2012), 203226. arXiv:cs.SC/1206.3463 Yu. A. Blinkov Mechanics and Mathematics Department Saratov State University, Saratov, Russia e-mail: [email protected] V. P. Gerdt Laboratory of Information Technologies Joint Institute for Nuclear Research, Dubna, Russia and Peoples' Friendship University of Russia, Moscow, Russia e-mail: [email protected] K. V. Marinov University "Dubna", Dubna, Russia e-mail: [email protected]
© Copyright 2026 Paperzz