IMM - DTU Question a) Let Xi denote

IMM - DTU
Question a) Let Xi denote
02405 Probability
2003-11-20
BFN/bfn
IMM - DTU
02405 Probability
2003-11-20
BFN/bfn
Question a) Let Xi denote the random value of the result of the
IMM - DTU
02405 Probability
2003-11-20
BFN/bfn
Question a) Let Xi denote the random value of the result of the i’th measurement
(i =
IMM - DTU
02405 Probability
2003-11-20
BFN/bfn
Question a) Let Xi denote the random value of the result of the i’th measurement
(i = 1, 2).
IMM - DTU
02405 Probability
2003-11-20
BFN/bfn
Question a) Let Xi denote the random value of the result of the i’th measurement
(i = 1, 2). The density of Xi is given by
02405 Probability
2003-11-20
BFN/bfn
IMM - DTU
Question a) Let Xi denote the random value of the result of the i’th measurement
(i = 1, 2). The density of Xi is given by
f (x)
IMM - DTU
02405 Probability
2003-11-20
BFN/bfn
Question a) Let Xi denote the random value of the result of the i’th measurement
(i = 1, 2). The density of Xi is given by
5
f (x) =
IMM - DTU
02405 Probability
2003-11-20
BFN/bfn
Question a) Let Xi denote the random value of the result of the i’th measurement
(i = 1, 2). The density of Xi is given by
1
5 l − 10
<
f (x) =
IMM - DTU
02405 Probability
2003-11-20
BFN/bfn
Question a) Let Xi denote the random value of the result of the i’th measurement
(i = 1, 2). The density of Xi is given by
1
1
5 l − 10
< x < l + 10
f (x) =
IMM - DTU
02405 Probability
2003-11-20
BFN/bfn
Question a) Let Xi denote the random value of the result of the i’th measurement
(i = 1, 2). The density of Xi is given by
1
1
5 l − 10
< x < l + 10
f (x) =
0
elsewhere
02405 Probability
2003-11-20
BFN/bfn
IMM - DTU
Question a) Let Xi denote the random value of the result of the i’th measurement
(i = 1, 2). The density of Xi is given by
1
1
5 l − 10
< x < l + 10
f (x) =
0
elsewhere
with cumulative distribution function
02405 Probability
2003-11-20
BFN/bfn
IMM - DTU
Question a) Let Xi denote the random value of the result of the i’th measurement
(i = 1, 2). The density of Xi is given by
1
1
5 l − 10
< x < l + 10
f (x) =
0
elsewhere
with cumulative distribution function
F (x)
02405 Probability
2003-11-20
BFN/bfn
IMM - DTU
Question a) Let Xi denote the random value of the result of the i’th measurement
(i = 1, 2). The density of Xi is given by
1
1
5 l − 10
< x < l + 10
f (x) =
0
elsewhere
with cumulative distribution function

0

F (x) =

x≤l−
1
10
02405 Probability
2003-11-20
BFN/bfn
IMM - DTU
Question a) Let Xi denote the random value of the result of the i’th measurement
(i = 1, 2). The density of Xi is given by
1
1
5 l − 10
< x < l + 10
f (x) =
0
elsewhere
with cumulative distribution function

0

5 x− l−
F (x) =

1
1
10
1
x ≤ l − 10
l− <x<l+
1
l + 10
≤x
1
10
1
10
02405 Probability
2003-11-20
BFN/bfn
IMM - DTU
Question a) Let Xi denote the random value of the result of the i’th measurement
(i = 1, 2). The density of Xi is given by
1
1
5 l − 10
< x < l + 10
f (x) =
0
elsewhere
with cumulative distribution function

0

5 x− l−
F (x) =

1
We find directly or using
1
10
1
x ≤ l − 10
l− <x<l+
1
l + 10
≤x
1
10
1
10
02405 Probability
2003-11-20
BFN/bfn
IMM - DTU
Question a) Let Xi denote the random value of the result of the i’th measurement
(i = 1, 2). The density of Xi is given by
1
1
5 l − 10
< x < l + 10
f (x) =
0
elsewhere
with cumulative distribution function

0

5 x− l−
F (x) =

1
We find directly or using
1
1
P l−
< Xi < l +
100
100
1
10
1
x ≤ l − 10
l− <x<l+
1
l + 10
≤x
1
10
1
10
02405 Probability
2003-11-20
BFN/bfn
IMM - DTU
Question a) Let Xi denote the random value of the result of the i’th measurement
(i = 1, 2). The density of Xi is given by
1
1
5 l − 10
< x < l + 10
f (x) =
0
elsewhere
with cumulative distribution function

0

5 x− l−
F (x) =

1
1
10
1
x ≤ l − 10
l− <x<l+
1
l + 10
≤x
1
10
1
10
We find directly or using
1
1
1
1
P l−
< Xi < l +
=F l+
−F l−
100
100
100
100
02405 Probability
2003-11-20
BFN/bfn
IMM - DTU
Question a) Let Xi denote the random value of the result of the i’th measurement
(i = 1, 2). The density of Xi is given by
1
1
5 l − 10
< x < l + 10
f (x) =
0
elsewhere
with cumulative distribution function

0

5 x− l−
F (x) =

1
1
10
1
x ≤ l − 10
l− <x<l+
1
l + 10
≤x
1
10
1
10
We find directly or using
1
1
1
1
P l−
< Xi < l +
=F l+
−F l−
= 0.1
100
100
100
100
02405 Probability
2003-11-20
BFN/bfn
IMM - DTU
Question a) Let Xi denote the random value of the result of the i’th measurement
(i = 1, 2). The density of Xi is given by
1
1
5 l − 10
< x < l + 10
f (x) =
0
elsewhere
with cumulative distribution function

0

5 x− l−
F (x) =

1
1
10
1
x ≤ l − 10
l− <x<l+
1
l + 10
≤x
1
10
1
10
We find directly or using
1
1
1
1
P l−
< Xi < l +
=F l+
−F l−
= 0.1
100
100
100
100
Question b) This is example 3 page
02405 Probability
2003-11-20
BFN/bfn
IMM - DTU
Question a) Let Xi denote the random value of the result of the i’th measurement
(i = 1, 2). The density of Xi is given by
1
1
5 l − 10
< x < l + 10
f (x) =
0
elsewhere
with cumulative distribution function

0

5 x− l−
F (x) =

1
1
10
1
x ≤ l − 10
l− <x<l+
1
l + 10
≤x
1
10
1
10
We find directly or using
1
1
1
1
P l−
< Xi < l +
=F l+
−F l−
= 0.1
100
100
100
100
Question b) This is example 3 page 343 with different parameters.
02405 Probability
2003-11-20
BFN/bfn
IMM - DTU
Question a) Let Xi denote the random value of the result of the i’th measurement
(i = 1, 2). The density of Xi is given by
1
1
5 l − 10
< x < l + 10
f (x) =
0
elsewhere
with cumulative distribution function

0

5 x− l−
F (x) =

1
1
10
1
x ≤ l − 10
l− <x<l+
1
l + 10
≤x
1
10
1
10
We find directly or using
1
1
1
1
P l−
< Xi < l +
=F l+
−F l−
= 0.1
100
100
100
100
Question b) This is example 3 page 343 with different parameters.
1 − 25
19
100
2
02405 Probability
2003-11-20
BFN/bfn
IMM - DTU
Question a) Let Xi denote the random value of the result of the i’th measurement
(i = 1, 2). The density of Xi is given by
1
1
5 l − 10
< x < l + 10
f (x) =
0
elsewhere
with cumulative distribution function

0

5 x− l−
F (x) =

1
1
10
1
x ≤ l − 10
l− <x<l+
1
l + 10
≤x
1
10
1
10
We find directly or using
1
1
1
1
P l−
< Xi < l +
=F l+
−F l−
= 0.1
100
100
100
100
Question b) This is example 3 page 343 with different parameters.
1 − 25
19
100
2
= 1 − 0.9025
02405 Probability
2003-11-20
BFN/bfn
IMM - DTU
Question a) Let Xi denote the random value of the result of the i’th measurement
(i = 1, 2). The density of Xi is given by
1
1
5 l − 10
< x < l + 10
f (x) =
0
elsewhere
with cumulative distribution function

0

5 x− l−
F (x) =

1
1
10
1
x ≤ l − 10
l− <x<l+
1
l + 10
≤x
1
10
1
10
We find directly or using
1
1
1
1
P l−
< Xi < l +
=F l+
−F l−
= 0.1
100
100
100
100
Question b) This is example 3 page 343 with different parameters.
1 − 25
19
100
2
= 1 − 0.9025 = 0.0975