IMM - DTU Question a) Let Xi denote 02405 Probability 2003-11-20 BFN/bfn IMM - DTU 02405 Probability 2003-11-20 BFN/bfn Question a) Let Xi denote the random value of the result of the IMM - DTU 02405 Probability 2003-11-20 BFN/bfn Question a) Let Xi denote the random value of the result of the i’th measurement (i = IMM - DTU 02405 Probability 2003-11-20 BFN/bfn Question a) Let Xi denote the random value of the result of the i’th measurement (i = 1, 2). IMM - DTU 02405 Probability 2003-11-20 BFN/bfn Question a) Let Xi denote the random value of the result of the i’th measurement (i = 1, 2). The density of Xi is given by 02405 Probability 2003-11-20 BFN/bfn IMM - DTU Question a) Let Xi denote the random value of the result of the i’th measurement (i = 1, 2). The density of Xi is given by f (x) IMM - DTU 02405 Probability 2003-11-20 BFN/bfn Question a) Let Xi denote the random value of the result of the i’th measurement (i = 1, 2). The density of Xi is given by 5 f (x) = IMM - DTU 02405 Probability 2003-11-20 BFN/bfn Question a) Let Xi denote the random value of the result of the i’th measurement (i = 1, 2). The density of Xi is given by 1 5 l − 10 < f (x) = IMM - DTU 02405 Probability 2003-11-20 BFN/bfn Question a) Let Xi denote the random value of the result of the i’th measurement (i = 1, 2). The density of Xi is given by 1 1 5 l − 10 < x < l + 10 f (x) = IMM - DTU 02405 Probability 2003-11-20 BFN/bfn Question a) Let Xi denote the random value of the result of the i’th measurement (i = 1, 2). The density of Xi is given by 1 1 5 l − 10 < x < l + 10 f (x) = 0 elsewhere 02405 Probability 2003-11-20 BFN/bfn IMM - DTU Question a) Let Xi denote the random value of the result of the i’th measurement (i = 1, 2). The density of Xi is given by 1 1 5 l − 10 < x < l + 10 f (x) = 0 elsewhere with cumulative distribution function 02405 Probability 2003-11-20 BFN/bfn IMM - DTU Question a) Let Xi denote the random value of the result of the i’th measurement (i = 1, 2). The density of Xi is given by 1 1 5 l − 10 < x < l + 10 f (x) = 0 elsewhere with cumulative distribution function F (x) 02405 Probability 2003-11-20 BFN/bfn IMM - DTU Question a) Let Xi denote the random value of the result of the i’th measurement (i = 1, 2). The density of Xi is given by 1 1 5 l − 10 < x < l + 10 f (x) = 0 elsewhere with cumulative distribution function 0 F (x) = x≤l− 1 10 02405 Probability 2003-11-20 BFN/bfn IMM - DTU Question a) Let Xi denote the random value of the result of the i’th measurement (i = 1, 2). The density of Xi is given by 1 1 5 l − 10 < x < l + 10 f (x) = 0 elsewhere with cumulative distribution function 0 5 x− l− F (x) = 1 1 10 1 x ≤ l − 10 l− <x<l+ 1 l + 10 ≤x 1 10 1 10 02405 Probability 2003-11-20 BFN/bfn IMM - DTU Question a) Let Xi denote the random value of the result of the i’th measurement (i = 1, 2). The density of Xi is given by 1 1 5 l − 10 < x < l + 10 f (x) = 0 elsewhere with cumulative distribution function 0 5 x− l− F (x) = 1 We find directly or using 1 10 1 x ≤ l − 10 l− <x<l+ 1 l + 10 ≤x 1 10 1 10 02405 Probability 2003-11-20 BFN/bfn IMM - DTU Question a) Let Xi denote the random value of the result of the i’th measurement (i = 1, 2). The density of Xi is given by 1 1 5 l − 10 < x < l + 10 f (x) = 0 elsewhere with cumulative distribution function 0 5 x− l− F (x) = 1 We find directly or using 1 1 P l− < Xi < l + 100 100 1 10 1 x ≤ l − 10 l− <x<l+ 1 l + 10 ≤x 1 10 1 10 02405 Probability 2003-11-20 BFN/bfn IMM - DTU Question a) Let Xi denote the random value of the result of the i’th measurement (i = 1, 2). The density of Xi is given by 1 1 5 l − 10 < x < l + 10 f (x) = 0 elsewhere with cumulative distribution function 0 5 x− l− F (x) = 1 1 10 1 x ≤ l − 10 l− <x<l+ 1 l + 10 ≤x 1 10 1 10 We find directly or using 1 1 1 1 P l− < Xi < l + =F l+ −F l− 100 100 100 100 02405 Probability 2003-11-20 BFN/bfn IMM - DTU Question a) Let Xi denote the random value of the result of the i’th measurement (i = 1, 2). The density of Xi is given by 1 1 5 l − 10 < x < l + 10 f (x) = 0 elsewhere with cumulative distribution function 0 5 x− l− F (x) = 1 1 10 1 x ≤ l − 10 l− <x<l+ 1 l + 10 ≤x 1 10 1 10 We find directly or using 1 1 1 1 P l− < Xi < l + =F l+ −F l− = 0.1 100 100 100 100 02405 Probability 2003-11-20 BFN/bfn IMM - DTU Question a) Let Xi denote the random value of the result of the i’th measurement (i = 1, 2). The density of Xi is given by 1 1 5 l − 10 < x < l + 10 f (x) = 0 elsewhere with cumulative distribution function 0 5 x− l− F (x) = 1 1 10 1 x ≤ l − 10 l− <x<l+ 1 l + 10 ≤x 1 10 1 10 We find directly or using 1 1 1 1 P l− < Xi < l + =F l+ −F l− = 0.1 100 100 100 100 Question b) This is example 3 page 02405 Probability 2003-11-20 BFN/bfn IMM - DTU Question a) Let Xi denote the random value of the result of the i’th measurement (i = 1, 2). The density of Xi is given by 1 1 5 l − 10 < x < l + 10 f (x) = 0 elsewhere with cumulative distribution function 0 5 x− l− F (x) = 1 1 10 1 x ≤ l − 10 l− <x<l+ 1 l + 10 ≤x 1 10 1 10 We find directly or using 1 1 1 1 P l− < Xi < l + =F l+ −F l− = 0.1 100 100 100 100 Question b) This is example 3 page 343 with different parameters. 02405 Probability 2003-11-20 BFN/bfn IMM - DTU Question a) Let Xi denote the random value of the result of the i’th measurement (i = 1, 2). The density of Xi is given by 1 1 5 l − 10 < x < l + 10 f (x) = 0 elsewhere with cumulative distribution function 0 5 x− l− F (x) = 1 1 10 1 x ≤ l − 10 l− <x<l+ 1 l + 10 ≤x 1 10 1 10 We find directly or using 1 1 1 1 P l− < Xi < l + =F l+ −F l− = 0.1 100 100 100 100 Question b) This is example 3 page 343 with different parameters. 1 − 25 19 100 2 02405 Probability 2003-11-20 BFN/bfn IMM - DTU Question a) Let Xi denote the random value of the result of the i’th measurement (i = 1, 2). The density of Xi is given by 1 1 5 l − 10 < x < l + 10 f (x) = 0 elsewhere with cumulative distribution function 0 5 x− l− F (x) = 1 1 10 1 x ≤ l − 10 l− <x<l+ 1 l + 10 ≤x 1 10 1 10 We find directly or using 1 1 1 1 P l− < Xi < l + =F l+ −F l− = 0.1 100 100 100 100 Question b) This is example 3 page 343 with different parameters. 1 − 25 19 100 2 = 1 − 0.9025 02405 Probability 2003-11-20 BFN/bfn IMM - DTU Question a) Let Xi denote the random value of the result of the i’th measurement (i = 1, 2). The density of Xi is given by 1 1 5 l − 10 < x < l + 10 f (x) = 0 elsewhere with cumulative distribution function 0 5 x− l− F (x) = 1 1 10 1 x ≤ l − 10 l− <x<l+ 1 l + 10 ≤x 1 10 1 10 We find directly or using 1 1 1 1 P l− < Xi < l + =F l+ −F l− = 0.1 100 100 100 100 Question b) This is example 3 page 343 with different parameters. 1 − 25 19 100 2 = 1 − 0.9025 = 0.0975
© Copyright 2026 Paperzz