Advanced Steel Structures SOLUTION Problem 1.3 Investigate the stability behavior of this asymmetric spring – bar model L P A B ks 450 C Solution B’ P L sin A B L(1 cos ) os Lc 0 45 C’ 450 C L Determine Δ L sin cos 45o L(1 cos ) cos 45o 2 sin cos 1 L 2 The strain energy 2 1 1 2 U k s 2 k s Lsin cos 1 2 2 2 1 2 U k s L2 sin cos 2sin cos 2 4 1 1 U k s L2 1 sin 2 2sin cos 1 k s L2 sin 2 2sin cos 2 4 4 The potential energy V P B PL1 cos The total potential energy 1 Advanced Steel Structures 1 U V k s L2 sin 2 2sin cos 2 PL1 cos 4 For equilibrium d 1 0 k s L2 2 cos2 2cos sin PL sin 0 d 4 Fundamental path θ =0 The (1) satisfies itself P 0 ~ Postbuckling equilibrium path 1 P k s Lcos2 cos sin 2 sin For small deformation sin 0 cos 1 Thus, 1 1 P Pcr k s L1 1 k s L 2 2 (1) For stability d 2 1 k s L2 2 sin 2 sin cos PL cos 2 2 d d 2 1 1 2 k L 2 sin 2 sin cos k s Lcos 2 cos sin L cos s 2 sin d 2 2 d 2 1 1 cos2 cos sin cos k s L2 2 sin 2 sin cos 2 2 2 sin d Establish the table to investigate the stability of the system 2 Advanced Steel Structures P d2/d2 State of (ksL) -90 1.000 -0.500 Unstable -80 1.065 -0.249 Unstable -70 1.090 -0.029 Unstable -68.529 1.090 0.000 ??? -60 1.077 0.144 Stable -50 1.033 0.259 Stable -40 0.961 0.310 Stable -30 0.866 0.299 Stable -20 0.754 0.233 Stable -10 0.630 0.127 Stable 0 0.500 0.000 Neutral 10 0.370 -0.127 Unstable 20 0.246 -0.233 Unstable 30 0.134 -0.299 Unstable 40 0.039 -0.310 Unstable 50 -0.033 -0.259 Unstable 60 -0.077 -0.144 Unstable 68.529 -0.090 0.000 ??? 70 -0.090 0.029 Stable 80 -0.065 0.249 Stable 90 0.000 0.500 Stable the structure From the table we can conclude that 0 0 -90 ≤ θ < -68.5 : the structure is unstable 0 -68.5 < θ < 0 : the structure is stable 0 0 < θ < 68.5 : the structure is unstable 0 0 -68.5 < θ ≤ 90 : the structure is stable 3 Advanced Steel Structures Load P vs Rotation 1.2 1.0 0.8 Load P (k sL) 0.6 0.4 0.2 0.0 -90 -80 -70 -60 -50 -40 -30 -20 -10 -0.2 0 10 20 30 40 50 60 70 80 90 30 40 50 60 70 80 90 -0.4 -0.6 -0.8 Rotation (degree) d /d vs Rotation 2 2 0.6 0.4 d2 /d 2 0.2 0.0 -90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 -0.2 -0.4 -0.6 Rotation (degree) 4 Advanced Steel Structures Problem 2 The system shown below is composed of 2 rigid bars and 2 rotational springs with the same spring constant ks (1) Determine the buckling models and buckling shapes of the system (2) If you can add one extra spring with the same spring constant to the system, where will you install the spring to maximize the critical load? Explain your decision. L P L B A Solution L P 2 1 L B A (1) The strain energy 1 1 2 U k s12 k s 2 1 2 2 The potential energy V PL L cos 2 L L cos 1 PL 2 cos 1 cos 2 The total potential energy 1 1 2 U V k s12 k s 2 1 PL2 cos1 cos 2 2 2 5 Advanced Steel Structures For equilibrium d d 0 1 d 0 d 2 k s1 k s 2 1 PLsin 1 0 k s 2 1 PLsin 2 0 For small deformation sin 0 cos 1 Thus, k s1 k s 2 1 PL1 0 k s 2 1 PL 2 0 2k s PL1 k s 2 0 k s1 k s PL 2 0 The matrix form of the above two equations k s 1 0 2k s PL k 0 k PL s s 2 (1) Fundamental path θ1 = θ2 =0; P 0 ~ Postbuckling equilibrium path For non-trivial solution, we need 2k s PL ks 0 ks k s PL 2k s PLk s PL k s2 0 2k s2 3PLks P 2 L2 k s2 0 P 2 L2 3PLks k s2 0 3 5 ks 2L The smallest value of P will be the critical load 3 5 ks k Pcr 0.382 s 2 L L P 6 Advanced Steel Structures Determine the buckling modes The first mode 3 5 ks P1 2 L For θ1 = 1, the from (1) we have 3 5 ks 2k s L 1 k s 2 0 2 L 1 5 1.618(rad ) 2 The second mode 3 5 ks P1 2 L For θ1 = 1, the from (1) we have 3 5 ks 2k s L 1 k s 2 0 2 L 2 1 5 0.618(rad ) 2 The two buckling modes are as following 2 P L L P A The first mode 1 1 B L 1 1 2 0.618 B L 2 1.618 A The second mode (2) (a) Case 1: add one spring at point A 7 Advanced Steel Structures P L L P 2 B ks ks 2k s L L 1 A 2k s The strain energy 1 1 2 U 2k s12 k s 2 1 2 2 The potential energy V PL L cos 2 L L cos 1 PL 2 cos 1 cos 2 The total potential energy 1 1 2 U V 2k s12 k s 2 1 PL2 cos1 cos 2 2 2 For equilibrium d d 0 1 d 0 d 2 2k s1 k s 2 1 PLsin 1 0 k s 2 1 PLsin 2 0 For small deformation sin 0 cos 1 Thus, 2k s1 k s 2 1 PL1 0 k s 2 1 PL 2 0 3k s PL1 k s 2 0 k s1 k s PL 2 0 8 Advanced Steel Structures The matrix form of the above two equations k s 1 0 3k s PL k 0 k PL s s 2 For non-trivial solution, we need 3k s PL ks 0 ks k s PL 3k s PLk s PL k s2 0 3k s2 4 PLks P 2 L2 k s2 0 P 2 L2 4 PLks 2k s2 0 k P 2 2 s L The smallest value of P will be the critical load k k Pcr 2 2 s 0.58 s L L (b) Case 2: add one spring at point B P L L P (2) 2 B 2k s 2k s A ks L L 1 ks The strain energy 1 1 2 U k s12 2k s 2 1 2 2 The potential energy V PL L cos 2 L L cos 1 PL 2 cos 1 cos 2 The total potential energy 1 1 2 U V k s12 2k s 2 1 PL2 cos1 cos 2 2 2 9 Advanced Steel Structures For equilibrium d d 0 1 d 0 d 2 k s1 2k s 2 1 PLsin 1 0 2k s 2 1 PLsin 2 0 For small deformation sin 0 cos 1 Thus, k s1 2k s 2 1 PL1 0 2k s 2 1 PL 2 0 3k s PL1 2k s 2 0 2k s1 2k s PL 2 0 The matrix form of the above two equations 2k s 1 0 3k s PL 2k 0 2 k PL s s 2 For non-trivial solution, we need 3k s PL 2k s 0 2k s 2k s PL 3k s PL2k s PL 4k s2 0 6k s2 5 PLks P 2 L2 4k s2 0 P 2 L2 5 PLks 2k s2 0 5 17 k s 2 L The smallest value of P will be the critical load k 5 17 k s Pcr 0.438 s (3) 2 L L From (2) and (3) we can see that adding one extra spring with the same spring constant at the hinge A will maximize the critical load k Pcr 0.438 s L P 10 Advanced Steel Structures DISCUSSION Problem 2 We will investigate two cases as following a) Case 1: k s1 nk s 2 (n≥1) P L L P ks2 ks 2 L 1 L B A k s1 nk s The strain energy 1 1 2 U nks12 k s 2 1 2 2 The potential energy V PL L cos 2 L L cos 1 PL 2 cos 1 cos 2 The total potential energy 1 1 2 U V nks12 k s 2 1 PL2 cos1 cos 2 2 2 For equilibrium d d 0 1 d 0 d 2 nks1 k s 2 1 PLsin 1 0 k s 2 1 PLsin 2 0 For small deformation sin 0 cos 1 Thus, 11 Advanced Steel Structures nks1 k s 2 1 PL1 0 k s 2 1 PL 2 0 (n 1)k s PL1 k s 2 0 k s1 k s PL 2 0 The matrix form of the above two equations k s 1 0 (n 1)k s PL 0 k k PL s s 2 For non-trivial solution, we need (n 1)k s PL ks 0 ks k s PL (n 1)k s PLk s PL k s2 0 (n 1)k s2 (n 2) PLks P 2 L2 k s2 0 P 2 L2 (n 2) PLks nks2 0 (n 2) n 2 4 k s 2 L The smallest value of P will be the critical load P Pcr (n 2) n 2 4 k s 2 L b) Case 2: k s 2 nk s1 (n≥1) P L L P k s 2 nk s 2 L 1 L B A k s1 k s The strain energy 1 1 2 U k s12 nks 2 1 2 2 12 Advanced Steel Structures The potential energy V PL L cos 2 L L cos 1 PL 2 cos 1 cos 2 The total potential energy 1 1 2 U V k s12 nks 2 1 PL2 cos1 cos 2 2 2 For equilibrium d d 0 1 d 0 d 2 k s1 nks 2 1 PLsin 1 0 nks 2 1 PLsin 2 0 For small deformation sin 0 cos 1 Thus, k s1 nks 2 1 PL1 0 nks 2 1 PL 2 0 (n 1)k s PL1 nks 2 0 nks1 nks PL 2 0 The matrix form of the above two equations nks 1 0 (n 1)k s PL nks nks PL 2 0 For non-trivial solution, we need (n 1)k s PL nks 0 nks nks PL (n 1)k s PLnks PL n 2 k s2 0 (n 1)nks2 (2n 1) PLks P 2 L2 n 2 k s2 0 P 2 L2 (2n 1) PLks nks2 0 (2n 1) 4n 2 1 k s P 2 L The smallest value of P will be the critical load 13 Advanced Steel Structures Pcr (2n 1) 4n 2 1 k s 2 L The dependence of Pcr on n for each case is expressed as follows n ks1 = nks2 ks2 = nks1 Pcr (ks/L) Pcr (ks/L) 1 0.382 0.382 1.5 0.500 0.419 2 0.586 0.438 2.5 0.649 0.450 3 0.697 0.459 3.5 0.734 0.464 4 0.764 0.469 4.5 0.788 0.472 5 0.807 0.475 5.5 0.824 0.477 6 0.838 0.479 6.5 0.850 0.481 7 0.860 0.482 7.5 0.869 0.483 8 0.877 0.484 8.5 0.884 0.485 9 0.890 0.486 9.5 0.896 0.487 10 0.901 0.488 14 Advanced Steel Structures The Critical Load Pcr vs n for Case 1 Critical Load P cr (ks/L) 1.0 0.8 0.6 0.4 0.2 0.0 0 1 2 3 4 5 6 7 8 9 10 11 n The Critical Load Pcr vs n for Case 2 Critical Load P cr (ks/L) 0.6 0.5 0.4 0.3 0.2 0.1 0.0 0 1 2 3 4 5 6 7 8 9 10 11 n From the above graphs, we can see that: when we increase n, the value of the critical load Pcr for case 1 goes up more quickly than for case 2. Therefore, to obtain the higher critical load Pcr, increase of spring constant at node A (at hinge) is more effective than at node B. In practices, if we need to have higher critical load Pcr, we should raise the spring constant at hinge 15
© Copyright 2026 Paperzz