Color Clustering and Learning for Image Segmentation Based on Neural Networks 2009.02.23 최지혜 Guo Dong, Member, IEEE, and Ming Xie, Member, IEEE Topic 신경망을 기초로한 영상분할을 위한 컬 러 클러스터링과 학습 주제어 : SOM (능동적으로 맵을 구성) SA (전역 최적 클러스터링 위해) HPL(계층적 초기학습) 요약 • 정확한 색상차이를 측정하기 위하여 수정 된 컬러공간 L*u*v*를 사용하였다. 분할 시스템은 supervised/unsupervised segmentation으로 이루어 졌는데, un의 경우 컬러감소와 컬러 클러스터링을 목 표로 할 수 있다. 컬러 클러스터링은 SOM-SA의 장점들로 취해 저 연산비용으 로 최적의 분할을 이룰 수 있다. HPL은 색 상 프로토타입들을 목적색상을 위해 좋은 근사처리로 공급된다. Image segmentation system based on neural networks 미리 알기 어려운 이미지 오브젝트의 컬러를 알고 있는 경우 Unsupervised segmentation 미리 알기 어려운 이미지 Spatial Compactness Color homogeneity Desirable properties Image-domain Feature-space Segmentation techniques Unsupervised segmentation Splitting and merging phases Watershed transform Self-organizing map SOM SOM • SOM is trained to generate the primitive clustering dominant colors of the image Description of Problem • To ensure a proper measure of color differences, image colors must be represented in a uniform color space. • In unsupervised segmentation, color reduction is indispensable to the segmentation of a large color image. • In supervised segmentation, color learning is crucial to build up an accurate classifier for the segmentation of the object of interest. Flow of This paper Appropriate color space color reduction is performed by SOM learning SA seeks the optimal clusters from SOM prototypes New procedure of supervised learning Appropriate color space L* is luminant component u* and v* are color components : u* axis varies from green to red v* axis changes from blue to yellow RGB to L*u*v* Color reduction : SOM learning a two-layer neural network with a rectangular topology Three inputs are fully connected to the neurons on a 2-D plane. Each neuron is a cell containing a weight values. SOM Training • Initialization – 16x16 rectangular neighborhood type is Gaussian weight vector –randomly initialize radius r = 16, 5 learning rate = 0.05,0.02 • Input - each color point • Competitive Process – ‘wining neuron’ SOM Training • Cooperative Process- The topological neighbors are determined by Gaussian function centered at • Adaptive Process - The weights of “winning neuron” and its neighbor neurons are updated within the neighborhood : Effective scope : neighborhood function Sammon mapping of 16x16 weight vectors after SOM training SA seeks the optimal clusters from SOM prototypes Simulated annealing은 커다란 탐색공간에서 주어진 함수의 전역 최적점에 대한 훌륭한 근사치를 찾으려고 하는 전역 최적화 문제에 대한 일반적인 확률적 휴리스틱 접근방법 고체의 물리적인 담금질과 아주 많은 경우의 수를 가진 조합최적화문 제사이의 밀접한 관계-> 여러 다른 신경망의 학습과정을 변화시켜줄 수 있다. 학습한다 :minimization 과정으로 볼 수 있으며, 이것은 energy function이나 error function에서 downward 방향으로 간다. Initial weight 잘못 선택 시 Local minimum SA의 개념의 도입 SA • The optimal solution is obtained by consisting in randomly perturbing the system, and gradually decreasing the randomness to a low final level. cluster centers be The criterion of sum-of-squared-error The procedure of SA clustering is to search the appropriate cluster centers = minimize the energy function SA Clustering Clustering Segmentation result by SOM-SA color clustering New procedure of supervised learning • RCE neural network is a supervised pattern classifier used for the estimation of feature region • hyperspherical window Drawback of RCE learning • requirement of a complete sample set for all classes • it requires the samples of both the object and the image background. – to segment the object of interest from the image background Hierarchical Prototype Learning • In some regions, a small size of prototype is appropriate, • Other regions, a large size of prototype is more suitable. >> The proper way of region estimation is to estimate the region by the different sizes of color prototypes. Hierarchical Prototype Learning EXPERIMENTAL EVALUATIONS (a)Original color image. (b) SOM color clustering. Q =5580.824. (c) SA clustering. Q = 182.526. (d) SOM-SA color clustering. Q =244.826. (e) CL-SA color clustering. Q = 376.845. Supervised segmentation (a) Original gesture image. (b) HPL learning. (c) Color threshold. (d) Color histogram. (a) Original hand gesture images. (b) Segmentation of hand gestures.
© Copyright 2026 Paperzz