Dispersion interactions with long-time tails or beyond local equilibrium Carsten Henkel PIERS session ‘Casimir effect and heat transfer’ (Praha July 2015) merci à : G. Barton (Sussex, UK), B. Budaev (Berkeley, CA) details in: ‘Friction forces on atoms after acceleration’ F. Intravaia & al, J Phys Cond Matt 27 (2015) 214020 Institute of Physics and Astronomy, Universität Potsdam, Germany www.quantum.physik.uni-potsdam.de download slides Motivation Disp ersion Interactions rgy e n e r i Casim e c r o f s l a a van der W Planck spectrum quantum fluct uations radiativ e heat tra nsfer non-equilibrium steady state nano-scale hea ting ... ‘field theory’ vs ‘radiation engineering’ Praha, July 2015 Motivation fields matter Maxwell Schrödinger ε0 ∂t E = ∇ × H − j approximations ························ Coulomb ε0 ∇2 φ = −ρ ························ ρ0 Newton ∂t j ≈ f m relaxation time approximation f (x, t) − feq (x) ∂t f (x, t) = . . . − τ Ohm j(r; ω) = σ(ω)E(r; ω) why? response of matter system is nonlinear need approximations: popular is ‘Born-Markov’ central assumption: separation of time scales fast thermalization slow radiative heating → local thermal equilibrium T (r, t) Praha, July 2015 Motivation Example Born-Markov master equation for two-level medium (continuous) dP dt dNe dt ∂E ε0 ∂t = −(iωA + Γ)P + iχ(Ng − Ne )E 1 Im(P∗ · E) h̄ dP = ∇×H− dt = −γNe + separation of time scales: ‘ultra-fast’ response of field, correlation time Markovian decay ‘fast’ response of matter, radiative (spontaneous) decay, ‘slow’ re-distribution of populations flat (white) spectrum narrow (peaked) spectrum Praha, July 2015 Outline Matter response to radiation: Born-Markov approximation separation of time scales This talk: spectra of (vacuum) field fluctuations ‘ultra-slow’, ‘non-Markovian’ correlations F~v 0← T F~v • case study: metallic half-space, two-level system at short distance z λ relevant to ‘quantum friction’: G. Barton, Proc Roy Soc (London) A 453 (1997); J Phys Cond Matt 23 (2011) F. Intravaia & al, J Phys Cond Matt 27 (2015) Praha, July 2015 Field response Kubo formula F~v T F~v 0← Barton’s model: recap potential Z Z φ(r, z, t) = d2 k dω φkω exp(ik · r − kz) akω (t) + h.c. Z linear response to charge density δhφ(x)i = dx0 χ(x, x0 )ρ(x0 ) x = (r, z, t) i χ(x, x0 ) = − h[φ(x), φ(x0 )]iΘ(t − t0 ) h̄ non-retarded response correlation response χ(z, z 0 ; k, ω) = − -Ωp -Ωs 0 Ωs Ωp −k(z+z 0 ) e 2ε0 k R(ω) ε(ω) − 1 R(ω) = ε(ω) + 1 Drude metal √ surface plasmon ωs = ωp / 2, damping Γ = 0.3 ωp Praha, July 2015 Field response Z d2 k Z dω φkω exp(ik · r − kz) akω (t) + h.c. Z linear response to charge density δhφ(x)i = dx0 χ(x, x0 )ρ(x0 ) φ(r, z, t) = Kubo formula i χ(x, x ) = − h[φ(x), φ(x0 )]iΘ(t − t0 ) h̄ 0 non-retarded response correlation response 0 e−k(z+z ) 0 R(ω) χ(z, z ; k, ω) = − 2ε0 k -Ωp -Ωs x = (r, z, t) back in time domain (damped oscillator) 0 Ωs Ωp ωs sin(ωs τ ) e−Γτ /2 χ(~r, ~r , τ ) = − Θ(τ ) 4πε0 |~r − ~r 0im | 0 Drude metal √ surface plasmon ωs = ωp / 2, damping Γ = 0.3 ωp image charge at ~ r 0im Praha, July 2015 Field response & correlations positive frequency part φ(x) = φ(+) (x) + φ(−) (x) = . . . aκ (t) + . . . a†κ (t) field vacuum state φ(+) (x)|vaci = 0 Kubo formula (+) χ i (+) 0 (x, x ) = − φ (x), φ(x ) Θ(t − t0 ) h̄ 0 pos freq response correlation response χ(+) (z, z 0 ; k, ω) = −i -Ωp -Ωs e −k(z+z 0 ) ε0 k Im R(ω)Θ(ω) ∗ • algebraic ‘fat tail’: τ 1/Γ 0 Ωs Ωp χ Drude metal √ surface plasmon ωs = ωp / 2, damping Γ = 0.3 ωp (+) i Im R0 (0) Θ(τ ) (~r, ~r , τ ) ≈ 4πε0 |~r − ~r 0im | πτ 2 0 same tail in correlations hφ(x)φ(x0 )ivac (fluctuation–dissipation / Shiba relation) Davidson & Kozak, J Math Phys 12 (1971); Wodkiewicz & Eberly, Ann Phys (NY) 101 (1976) Praha, July 2015 1 iω Non-Markovian challenges Comment on fluctuation-dissipation relation (kink near zero frequency) Shiba relation, Sassetti & Weiss 1990 (Tauber rule) power law tails . . . are a problem for Markov approximation (‘eternal slip’ ?) Haake & Reibold 1985 Challenge: self-consistent field+atom spectral function near zero frequency, beyond factorising initial conditions Slutskin & al 2011 Q friction power law in velocity v depends on shape of spectrum near ω = 0 Intravaia & al 2014/15 Praha, July 2015 Discussing with Bair Budaev Budaev & Bogy, Ann Phys (Berlin) 523 (2011); Appl Phys Lett 99 (2011) T2 d Thermal radiation with heat current Q̇: S(ω; T, Q̇) beyond Planck Ann Phys (Berlin) 2011 • radiation thermalizes poorly T signals from astronomy • matter huge thermal reservoir the Sun: our black body • preferred frame: energy current vs crystal lattice Exit evanescent waves: reproduce radiative heat transfer without T+ ! T T1 CMB spectroscopy vs condensed matter (cit’n?) • required by boundary conditions (charges, impurities, interfaces, nano-scale objects) Berry, J mod Opt 48 (2001) ‘virtual photons’ tunnelling current • large k ω/c – ‘non-radiative’ transport channels attached to matter near field Praha, July 2015 Discussing with Bair Budaev Thermal radiation with heat current Q̇: S(ω; T, Q̇) beyond Planck Ann Phys (Berlin) 2011 Exit evanescent waves: reproduce radiative heat transfer without T2 d (cit’n?) T1 T+ ! T T Short-distance limit of heat transfer: recover homogeneous medium ∆T →∞ 2 d between dielectrics Q̇ = σ(n)(T14 − T24 ) No! (Kapitza resistance?) • radiation model does not allow for d → 0 Budaev & Bogy, Appl Phys Lett 2011 • between conductors Q̇ ∼ h(T ) OK! (nonlocality?!) Ezzahri & Joulain, Phys Rev B 2014 • coupled oscillator model (‘non-LTE’) e.g. Barton, J Phys Cond Matt 27 (2015) Praha, July 2015 Summary & Perspectives • Fluctuation-dissipation (Shiba) relation for vacuum field kink spectrum near zero frequency → ‘fat correlations’ • Challenge: self-consistent field+atom spectral function near zero frequency Sassetti & Weiss, Phys Rev Lett 65 (1990); beyond factorising initial conditions Slutskin & al, Europhys Lett 96 (2011) • ‘Easy way out’: restore T > 0 1–10 K → h̄/kB T ∼ ps • Locally (near) thermal equilibrium matter dynamics phonons couple (Chen group, Nat Commun 2015) reasonable approximations behind near-field heat transfer correlation response -Ωp -Ωs 0 Ωs Ωp www.quantum.physik.uni-potsdam.de Praha, July 2015
© Copyright 2026 Paperzz