5. Asymptotic Expansions 1. Expansion in negative powers [ Stokes’ method (Ex 14.6.10.) ]. Problem : Relation to named functions not known. 2. Steepest descent. Asymptotic Forms of H Contour integral representation: 1 H t i 1 e z 1/ z t / 2 dz z 1 2 H C1 d z g z e w z g z0 e w z0 e i C w t z 1 / z 2 t w 3 z H t 1 dz e z 1/ z t / 2 z 1 C2 w z0 0 Method of steepest descent ( §12.7 ) : 1 t i w w z0 1 3 arg w z0 or 2 2 2 t 1 1 0 2 2 z t i 1 1 i t i 3 / 4 i e e i 2 w z0 3 te 2 t z0 i w z0 i t 3 3 / 4 or 4 2 2 /4 i /2 H t 1 1 1 i 1 i t i / 4 i e e e i 2 t H t 1 1 1 i t i 3 / 4 i e e i 2 t 3 exp i t i 1 1 2 2 2 exp i t i t 2 K x 2 1 2 i 1 H1 i x H t 1 2 t 1 1 i 1 i t i / 4 i e e e i 1 exp i t i 1 1 2 2 K x ~ 2 exp i t i t 2 2x 2x i 1/2 e xt 1 2 exp xt i 2 1 2 2 t 2 t Expansion of an Integral Representation for K Consider R z z 1 2 2 Proof : 1. R satisfies the MBE. R z R z z2 z R z R z z dx e z R zR z 2 2 R z 2 R 1 1/2 1 2 , z 2 R zR z 2 2 R 0 z 1 2 2 R z x 2 1 zx 1 2 d x x e z x x 2 1 1/2 1 z 1 2 2 2 Re z 0 1/2 d x x x e z x x 2 1 z 1 z 1 2 2 d x 2 xz 1 z x e 1 zx x 2 1 1/2 z R zR z 2 2 z d zx e dx 2 R z R 2 z 1 2 2 d x 2 xz 1 z x e zx x 2 1 1 2 x 1/2 1/2 2 zx 2 2 x 1 z z x 2 1 e x 1 z 2 z x 2 xz 1 e z x x 2 1 1/2 z 2 R zR z 2 2 R 0 1/2 z zx 2 z e x 1 1 1 2 2 1 2 QED 1 1/2 K z 2 1 z z R z 1 / 2 2 dx e z x x 2 1 1/2 1 Proof : 2. R = K for z 0. t x 1 z Let e z x e z t z z e R z 1 / 2 2 z z e 1 / 2 2 z tt 2 z z 2z d t e t t 2 1 1 t 1/2 1 1 / 2 2 z 1 2 d t e t t 2 1 0 1 2 1 / 2 2 z 2 1 z dt e t 1/2 0 0 x t 1 0 tt x2 1 2 z z dt dx z QED 1 1 z z 2 2 z 2 z 1 2 1 2 z z z 22 z 1 2 Proofs 1 & 2 K z R = K z 1 / 2 2 i.e. d x e z x x 2 1 1 2 1/2 , 1 Proof : 3. K (z) decays exponentially for large z. z z e K z 1 / 2 2 z 1 1 / 2 2z d t et tt 2 z z 0 e z 1/2 1/2 t d t e t t 1/2 1 2z 0 2z e z r0 1 r 2 z r ! r 1 / 2 d t e t t r 1/2 0 K z 2z e z r 0 r 1 / 2 r 2z ~ r ! r 1 / 2 2z e z QED Re z 0 K z 2z e z r 0 r 1 / 2 r 2z r ! r 1 / 2 is a divergent asymptotic series 1 / 2 1 / 2 3 / 2 1 / 2 1 / 2 3 / 2 e 1 2 2z 2z 2! 2 z 1 3 Series terminates for , , 2 2 1 x z z 2 d2 3 d 4 d 2x x 2 dz dx d x2 d d x2 dz dx 2 1 R z R z 1 2 R 0 z z R x x 4 R x x 3 R x 1 2 x 2 R x 0 1 1 1 R x 2 2 2 R x 0 x x x 1 1 2 lim x 0 2 2 2 x0 x x z = is an essential singularity No convergent series solution about z = . K z 2z 2z e z r 0 e z r 1 / 2 r 2z r ! r 1 / 2 n0 2n 1 / 2 2 n 2z 2n ! 2n 1 / 2 n0 2n 3 / 2 2 n 1 2z 2n 1! 2n 1 / 2 e z P iz i Q iz 2z P z n0 2n 1 / 2 2n 1 / 2 2 n 2 n 2i z n 2z 2n ! 2n 1 / 2 2n ! 2n 1 / 2 n0 2 3 2 2 1 2 2 2 ~ 1 2 2! 2 z Q z i 2n 3 / 2 2 7 2 2 5 2 2 3 2 2 1 2 2 2 2 2 4 4! 2 z 2n 1! 2n 1 / 2 2 i z n0 2 1 2 2 ~ 2z 2 n 1 2n 3 / 2 n 2 n 1 2 z 2n 1! 2n 1 / 2 n0 2 5 2 2 3 2 2 1 2 2 2 2 3 3! 2 z P z Additional Asymptotic Forms Q z Asymptotic forms of other Bessel functions can be expressed in terms of P & Q . K x 2 i 1 H1 i x H1 z H 2 1 * Analytic continued to all z : n0 2n 1 / 2 2 n 2z 2n ! 2n 1 / 2 2n 3 / 2 n 2 n 1 2 z 2n 1! 2n 1 / 2 n0 K z H1 x n 2 e z P iz i Q iz 2z i 1 K i x 2 i z i 1/2 / 2 e P z i Q z z x H x Analytic continued to all z 2 i x i 1/2 / 2 e P x i Q x x H 2 z 2 i z i 1/2 / 2 e P z i Q z z H1 z 1 J x Re H x Y x Im H x 2 1 1 P x cos x Q x sin x x 2 2 2 2 2 1 1 P z cos z Q z sin z z 2 2 2 2 J z 1 2 i z i 1/2 / 2 e P z i Q z z Y z I z i J iz 2 1 1 P x sin x Q x cos x x 2 2 2 2 2 1 1 P z sin z Q z cos z z 2 2 2 2 I z ez P i z i Q i z 2 z P z ~ 1 2 1 / 2 2 Q z ~ 2z Properties of the Asymptotic Forms 1 3 Series terminates for , , 2 2 All Bessel functions have the asymptotic form Z z 1 f z P z i g z Q z z where f z , g z e z , e i z , cos z , or sin z K z 1 z e z e.g. I z J z ~ 2 1 cos z z 2 2 good for 2 z 2 1 / 2 Y z ~ 2 1 z e z 2 1 sin z z 2 2 2 J0 z ~ cos z z 4 2 1 J z ~ cos z z 2 2 2 z 2 1 / 2 Mathematica 2 Example 14.6.1. Eg. 14.1.24 : Cylindrical Traveling Waves 2-D vibrating circular membrane standing waves Consider 2-D vibrating circular membrane without boundary travelinging waves For large r U e i k x t Circular symmetry (no dependence ) : U r, t H 0 k r e i t 1 diverges at r = 0 6. Spherical Bessel Functions Radial part of the Helmholtz eq. in spherical coordinates d 2R dR 2 2 r 2 r k r l l 1 R 0 2 dr dr 2 R k r d2R d r2 Z k r kr dR dr 1 dZ 1 Z kr d r 2 r 1 d2Z 1 d Z 1 1 d Z 1 2Z Z 2 d r 2 r d r 2 r 2 r d r 2 r kr 1 d2Z 1 dZ 3 Z 2 2 r d r 4r kr d r 2 2 d Z d Z 1 2 2 2 r r k r l Z 0 2 dr d r 2 J l 1/2 k r Z k r Y l 1/2 k r J l 1/2 k r kr R k r Yl 1/2 k r kr Spherical Bessel functions J x cos J x Y x sin Definitions Spherical Bessel functions ( integer orders only ) : jn x hn1 x 2x 2x J n1/2 x yn x H n11/2 x hn 2 x jn x i yn x Yn 1/2 x yn x sin n 1 / 2 2x n 1 J n1/2 x 2x 2x Yn1/2 x H n21/2 x jn x i yn x J n 1/2 x cos n 1 / 2 J n 1/2 x n 1 J n1/2 x yn x n 1 jn1 x jn x 2x jn x J n1/2 x J x s0 2x s0 x n s 3 / 2 s! 2 3 1 1 n s n s n s 2 2 2 where s 2s n 2 s 1/2 Pochhammer symbol 1 1 2n 1!! n 1 2 2 2 xn x jn x 3 2n 1!! s 2 0 n s ! 2 s s s 3 3 3 3 n n n n 2 2 2 s 2 n s n n 1 n s 1 3 1 1 3 n n n n 2 2 2 2 x s 1 s ! 2 2s yn x n 1 jn1 x yn x jn x n 1 2x s0 yn x yn x 2n 1!! x n 1 n 1/2 2x 2 s0 s0 s s x n s 3 / 2 s! 2 s n 2 s 1/2 n 2 s 1/2 1 1 1 1 n n n n 2 s 2 2 2 1 1 n n n 2 2 2 x n 1 2x x n s 1 / 2 s ! 2 1 1 3 n s n s n s 2 2 2 1 1 1 1 2 2 2 n 2n 1!! 1 n 2 2s 2n 1!! x 2n 1 / 2 s 0 n 1 / 2 s s ! 2 n x n 1 / 2 s s ! 2 s 2s 1 y0 x x x 2s 1 / 2 s ! 2 s0 s s jn & yn Mathematica x 3 2 s! 2 s s j0 x s0 3 22 s s ! 22 s 2 s 3 5 2 2 j0 x s0 1 22 s s ! 22 s 2 s y0 x 1 x x 2s s s 2 s 2 s 2 s 2s 2n 1!! x yn x x n 1 s 0 n 1 / 2 s s ! 2 4 2 sin x j0 x x 3 1 s s s s 1 2 2 x 2s s 0 2s ! 2s x 3 2 n s! 2 s y0 x cos x x 2s 2 1 2s 1!! 2s !! 2s 1! s 2s 1! 1 3 2 2 x jn x 2n 1!! s 0 1 1 s s s s 1 2 2 2 s 1 2 s 1 3 5 n x 1 / 2 s ! 2 s0 s s 1 y0 x x 2s sin x s0 s 2s 1! x 2 s 1 2 1 2s 1!! 2s !! 2s ! x 2s cos x s 0 2s ! s hn1 x 1 H 2x n n0 h 01 x 2n 1 / 2 2 n 2z 2n ! 2n 1 / 2 n 1 Pn 1/2 z s s0 i Qn 1/2 z i Q z n 2s 2 2 s 1 s0 n 1 ix e x n t ! t t 0 2 x t ! n t ! n i t cos x x 2n 3 / 2 n 2 n 1 n0 h 02 x 1 i sin x i cos x e i x x x z 1 for z 1, 2, n 2 s 1 2 s 2z 2 s ! n 2 s 1 t 0, 2, 4, s y0 x 2n 1! 2n 1 / 2 2 z 1 ix e Pn 1/2 x i Qn 1/2 x x 2s 1! n 2s 2 z hn1 x i 2x H n 21/2 x jn x i yn x sin x j0 x x 1 i sin x i cos x e i x x x hn1 x i hn 2 x 2 i z i 1/2 / 2 e P z i Q z z z P z H n11/2 x jn x i yn x it , t1 t 1, 3, 5, i n t ! 2 z t t ! n t ! it , t1 n 1 n t ! 2 z t t ! n t ! ix e x t 2s t1 n or n 1 t 2s 1 2n 2t !! t t 0 8 x t ! 2n 2t !! n i t n! 2n !! 2n 1 hn x i n 1 ei x x n t ! t t 0 2 x t ! n t ! it n ei x i 1 x x ei x i h1 x 1 x x h1 ei x 3 i 3 h2 x i 1 2 x x x ei x 3 i 3 h 2 x i 1 2 x x x 1 1 j1 x 2 x h1 x * 2 1 1 h1 x h1 2 x cos x sin x 2 x x2 j2 x 1 jn x 1 1 h n x h n2 x 2 sin x 3 cos x 3sin x x x2 x3 y1 x sin x cos x 1 1 2 2 h x h x 1 1 x x 2i y2 x cos x 3 sin x 3cos x x x2 x3 yn x 1 1 2 h x h n n x 2i For any Bessel functions Recurrence Relations F (x) = J (x) , Y (x) , H (1,2)(x) : F 1 x F 1 x For any spherical Bessel functions F 1 x F 1 x 2F x fn (x) = jn (x) , yn(x) , hn(1,2)(x) : fn x 2x f n x Fn 1/2 x 1 fn x 2x 2x Fn1/2 x 2 F x x f n 1 x f n 1 x 2x 2n 1 fn x x Fn1/2 x f n x 1 fn x 2x 1 1 f n 1 x f n 1 x 2 f n x f n x 2 f n x f n 1 x f n 1 x 2x 2 2n 1 n f n1 x n 1 f n1 x 2n 1 f n x fn x 2x d x F x x F 1 x dx Fn 1/2 x d x n 1/2 Fn 1/2 x x n 1/2 Fn 1/2 x dx d x n 1/2 Fn 1/2 x x n 1/2 Fn 3/2 x dx d x F x x F 1 x dx d x n 1 f n x x n 1 f n 1 x dx d x n f n x x n f n 1 x dx Rayleigh Formulas jn x n n 1 d sin x xn x dx x h n x i 1 n n ix n1 d e x x d x x n 1 d cos x n yn x x n x dx x 2 hn x i n n 1 d e i x x x d x x n Proof is by induction. n Proof of Rayleigh Formula For n = 1 : 1 d sin x cos x sin x x 2 j1 x x x x d x x Assuming case n to be true, n 1 1 d sin x n jn x x n x d x x 1 d x n 1 x dx n 1 sin x x n f n1 x n 1 f n1 x 2n 1 f n x f n 1 x f n 1 x 2n 1 fn x x n n 1 d sin x d n n n 1 1 d sin x n x x n dx x d x x x d x x jn x n jn x x n n 1 n jn 1 x jn 1 x jn 1 x jn 1 x 2n 1 2n 1 2n 1 jn1 x QED Limiting Values : x << 1 n x jn x 2n 1!! s 0 x 3 2 n s! 2 s s 2s 2n 1!! x yn x x n 1 s 0 n 1 / 2 s s ! 2 s For x << 1 : xn jn x 2n 1!! yn x 2n 1!! x n 1 n 0 1 2s Limiting Values : x >> n ( n + 1 ) / 2 jn x ~ yn x ~ 2x J n 1/2 x jn x ~ 2x 1 cos x n 1 x 2 1 n sin x x 2 Yn 1/2 x hn x jn x i yn x ~ 2 i exp i x 2 1 cos z z 2 2 Y z ~ 2 1 sin z z 2 2 fn x 2x Fn 1/2 x Standing spherical waves 1 sin x n 1 x 2 1 h n x jn x i yn x ~ i exp i x J z ~ 1 n yn x ~ cos x x 2 n x 2 n x 2 Travelling spherical waves Orthogonality & Zeros fn x 2x Fn 1/2 x Set r . 2 n i n j a Note: n i for jn is numerically the same as n+1/2, i for Jn+1/2, . 2 2 r r 1 2 ni d r r j j a j n ni ij n 1 ni n nj 0 a a 2 a 2 a 2 1 2 0 d J i a J j a i j 2 a J 1 i a 2 r r 1 3 0 d r r jn n i a jn n j a i j 2 a jn 1 ni 2 Zeros of Spherical Bessel Functions nk : kth zero of jn(x) nk : kth zero of jn(x) kth zero of j0(x) = kth zero of J1(x) kth zero of jn(x) ~ kth zero of jn-1(x) Mathematica Example 14.7.1. Particle in a Sphere Schrodinger eq. for free particle of mass m in a sphere of radius a : 2 2m 2 V E Radial eq. for r a : l l 1 2 R R k 2 R0 2 r r R is regular at r = 0 ra 0 sin x j0 x x ra 0 2 k2 E 2m R A jl kr B yl kr R 0 ra V ra with r Rnl A jl l n a 0 n n B=0 quantized k l n Emin E1 0 En l a 2 2 021 2m a 2 2 2 2m a 2 l2n 2m a 2 General remarks : 1. Spatial confinement 2. Finite zero-point energy ( uncertainty principle ). 3. E is angular momentum dependent. 4. Eigenfunction belonging to same l but different n are orthogonal. energy quantization. More Orthogonality : d x jm x jn x mn 2n 1 m, n 0 Ex.14.7.12-3 Modified Spherical Bessel Functions d 2R dR r 2 r k 2 r 2 l l 1 R 0 2 dr dr 2 Spherical Bessel equation : 2 d R dR r 2 2 2r k 2 r 2 l l 1 R 0 dr dr Modified Spherical Bessel equation : fn x 2x Fn 1/2 x Caution : in x kn x 2 2x I n 1/2 x 2x I n 1/2 x kn x 2 I n 1/2 x x Recurrence Relations 2 I 1 x I 1 x I x x in x I 1 x I 1 x 2 I x in 1 x in 1 x kn x 2n 1 in x x n in1 x n 1 in1 x 2n 1 in x kn 1 x kn 1 x 2n 1 k n x x n kn1 x n 1 kn1 x 2n 1 k n x 2x I n 1/2 x 2 I n 1/2 x x i0(x), i1(x), i2(x), sinh x i0 x x e x k0 x x cosh x sinh x x x2 1 1 k 1 x e x 2 x x sinh x 3 cosh x 3sinh x 2 x x x3 3 1 3 k2 x e x 2 3 x x x i1 x i2 x k0(x), k1(x), k2(x) Mathematica Limiting Values For x << 1 : For x >> 1 : xn in x 2n 1 !! ex in x ~ 2x 2n 1!! e x kn x ~ x kn x x n 1 Example 14.7.2. Particle in a Finite Spherical Well Schrodinger eq. for free particle of mass m in a well of radius a : 2 V E 2 2m Radial eq. : V0 0 r a V ra 0 with l l 1 2 2 R R k r R 0 2 r r Rin r A jl kr Bound states : V0 < E < 0 Rout r B kl r 2 r0 r regular 0 k r E V r 2m k2 E V0 0 2m 2 2 2 2 2m E 0 ra ra Smooth connection : Rin a Rout a a Rin a Rout A jl ka B kl a A k jl ka B kl a Numerical solution
© Copyright 2026 Paperzz