Linear Programming ___________________________________________________________________________ Operations Research Jan Fábry Linear Programming Modeling Process Real-World Problem Implementation Recognition and Definition of the Problem Interpretation Validation and Sensitivity Analysis of the Model Formulation and Construction of the Mathematical Model Solution of the Model ___________________________________________________________________________ Operations Research Jan Fábry Linear Programming Mathematical Model decision variables linear objective function maximization minimization linear constraints equations = inequalities or nonnegativity constraints ___________________________________________________________________________ Operations Research Jan Fábry Linear Programming Example - Pinocchio 2 types of wooden toys: truck train Inputs: wood - unlimited carpentry labor – limited finishing labor - limited Demand: trucks - limited trains - unlimited Objective: maximize total profit (revenue – cost) ___________________________________________________________________________ Operations Research Jan Fábry Linear Programming Example - Pinocchio Truck Train Price 550 CZK 700 CZK Wood cost 50 CZK 70 CZK Carpentry labor 1 hour 2 hours Finishing labor 1 hour 1 hour Monthly demand limit 2 000 pcs. Worth per hour Available per month Carpentry labor 30 CZK 5 000 hours Finishing labor 20 CZK 3 000 hours ___________________________________________________________________________ Operations Research Jan Fábry Linear Programming Graphical Solution of LP Problems Feasible area Objective function Optimal solution x2 z x1 ___________________________________________________________________________ Operations Research Jan Fábry Linear Programming Graphical Solution of LP Problems Feasible area - convex set A set of points S is a convex set if the line segment joining any pair of points in S is wholly contained in S. Convex polyhedrons ___________________________________________________________________________ Operations Research Jan Fábry Linear Programming Graphical Solution of LP Problems Feasible area – corner point A point P in convex polyhedron S is a corner point if it does not lie on any line joining any pair of other (than P) points in S. ___________________________________________________________________________ Operations Research Jan Fábry Linear Programming Graphical Solution of LP Problems Basic Linear Programming Theorem The optimal feasible solution, if it exists, will occur at one or more of the corner points. Simplex method ___________________________________________________________________________ Operations Research Jan Fábry Linear Programming Graphical Solution of LP Problems x2 Corner point 3000 A B C D E E 2000 D x2 z 0 2000 2000 1000 0 0 0 1000 2000 2500 0 900 000 1 450 000 1 550 000 1 375 000 C 1000 B A 0 x1 1000 2000 x1 ___________________________________________________________________________ Operations Research Jan Fábry Linear Programming Interpretation of Optimal Solution Decision variables Objective value Binding / Nonbinding constraint ( or ) Slack/Surplus variable = 0 Slack/Surplus variable > 0 ___________________________________________________________________________ Operations Research Jan Fábry Linear Programming Special Cases of LP Models Unique Optimal Solution x2 A z x1 ___________________________________________________________________________ Operations Research Jan Fábry Linear Programming Special Cases of LP Models Multiple Optimal Solutions x2 B z C x1 ___________________________________________________________________________ Operations Research Jan Fábry Linear Programming Special Cases of LP Models No Optimal Solution x2 z x1 ___________________________________________________________________________ Operations Research Jan Fábry Linear Programming Special Cases of LP Models No Feasible Solution x2 x1 ___________________________________________________________________________ Operations Research Jan Fábry
© Copyright 2026 Paperzz