Images of Bose-Einstein condensates Jacek Dziarmaga & Krzysztof Sacha PRA 67, 033608 (2003) cond-mat/0503328 Kraków, Poland Condensate interference Bogoliubov theory Diagonal t-dependent vacuum Measurements on the vacuum Javanainen & Yoo, PRL 76, 161 (1996) Condensate interference Fock state N 2 , N 2 in e i x and e i x ( x) ( x) ( x) 1 Single density measurement Condensate interference In experiment P( x1 , x2 ,...., xN ) N N ( x1 ) ( x2 ).... ( xN )( xN )....( x2 )( x1 ) 2 , 2 N 2 , N2 In computer experiment P( x1 ) N 2 , N 2 ( x1 ) ( x1 ) N 2 , N2 annihilation of atoms P( xk 1 | xk ..x1 ) N N N N , ( x ).. ( x ) ( x ) ( x ) ( x ).. ( x ) 1 k k 1 k 1 k 1 2 , 2 2 2 Condensate interference 2 N 2 , N 2 d i 2 ix e e i 2 1 2 N: e 1 2 N : cos( x 2 ) e ix 0 2 d 0 ( xk ).... ( x1 ) 2 N 2 , N 2 d ( , 0 ) 2 N : cos( x ) 0 0 ( x1 ,...., xk ) 1 k Phase ``collapse’’ by density measurement Quantum Bogoliubov theory Hamiltonian H dx 1 1 V ( x ) x 2 x 2 g Small fluctuations ( x) N 0 ( x) ( x) 0 V ( x) g 0 H GP 0 1 2 2 x * 0 0 H 2 dx , L with H GP g0*0 L * * g 0 0 Expansion Fig.Jav g0 0 H GP g0*0 Bogoliubov transformation ( x) m 1 * bm um ( x) bm vm ( x) um m L vm bm um um vm vm Bogoliubov Hamiltonian H 2 m bm bm m 1 particles <-> quasiparticles Bogoliubov vacuum bm 0b 0 Time-dependent Bogoliubov theory Condensate in the ground state 0b V ( x, t ) Condensate in an excited state ( x ) N 0 ( x ) ( x ) 0b ( t ) i t 0 g V ( x , t ) 0 1 2 2 x * 0 0 Time-dependent Bogoliubov theory m 1 * bm um (t ) bm vm (t ) 0b 0b t Excited state = t-dependent vacuum Ansatz um um i t L(t ) Solution vm vm bm (t ) um (t ) vm (t ) bm (t ) 0b ( t ) 0 Diagonal dynamical vacuum We claim 0b ( t ) N 2 a0 a0 a a 0 1 0 (t ) condensate wave function (t ) [0,1) (t ) orthonorma l basis D & Sacha, PRA 67, 033608 (2003) cond-mat/0503328 Proof (constructive) 0b ( t ) ( x) ( y ) 0b ( t ) 1 dN (t , x) (t , y ) * 0b ( t ) ( x) ( y ) 0b ( t ) e 2 i 1 (t ) dN (1 dN ) (t , x) (t , y ) dN [0,1) 1 dN (t , x) (t , x) ei um (t ) vm (t ) (t ) (t ) q - representation a0 a0 a a dq exp 1 2 N 2 0 q 2 N : 0 1 N q Real coordinates q q - representation dq exp 1 2 For dN q q 2 1 2 e P(q) e q 12 N : 0 2 ( q q ) q 1 q 1 1 N 2 (q q) 2 e 12 q2 dN Probability for q Density measurement P(q) exp q2 1 2 dN ( x | q ) N 0( x ) 1 N q ( x ) 2 Dark soliton i t0 x 0 g 0 0 V (t , x)0 1 2 2 x 0 1 2 2 2 Fig:imprinting Phase imprinting Organizers Burger et al., PRL 83, 5198 (1999) Phase imprinting in Bogoliubov theory Condesate Density after 2ms In focus Total density after 2ms Mode 1 Density measurement 0b a a a a 0 0 N 1.5 105 1 1 1 N 2 0 Truncated vacuum dN1 273 Solid line : N 0 with q1 14.48 N 1 q1 2 Conclusion 0b a0 a0 a a N 2 0 Condensate in thermal state V ( x, t ) Condensate in ``excited thermal state’’ 12 bL* bL 12 bR* bR bL* e bR 2 2 d bL d bR e N : bL N : bR Tr ( x) ( y ) ( x | q) N 0 (t , x) q (t , x) Tr ( x) ( y) 1 (t , x) are NOT orthogonal
© Copyright 2026 Paperzz