Physical Fluctuomatics 5th and 6th Probabilistic information processing by Gaussian graphical model Kazuyuki Tanaka Graduate School of Information Sciences, Tohoku University [email protected] http://www.smapip.is.tohoku.ac.jp/~kazu/ Physical Fluctuomatics (Tohoku University) 1 Textbooks Kazuyuki Tanaka: Introduction of Image Processing by Probabilistic Models, Morikita Publishing Co., Ltd., 2006 (in Japanese) , Chapter 7. K. Tanaka: Statistical-mechanical approach to image processing (Topical Review), Journal of Physics A: Mathematical and General, vol.35, no.37, pp.R81-R150, 2002, Section 4. Physical Fluctuomatics (Tohoku University) 2 Contents 1. 2. 3. 4. 5. Introduction Probabilistic Image Processing Gaussian Graphical Model Statistical Performance Analysis Concluding Remarks Physical Fluctuomatics (Tohoku University) 3 Contents 1. 2. 3. 4. 5. Introduction Probabilistic Image Processing Gaussian Graphical Model Statistical Performance Analysis Concluding Remarks Physical Fluctuomatics (Tohoku University) 4 Markov Random Fields for Image Processing Markov Random Fields are One of Probabilistic Methods for Image processing. S. Geman and D. Geman (1986): IEEE Transactions on PAMI Image Processing for Markov Random Fields (MRF) (Simulated Annealing, Line Fields) J. Zhang (1992): IEEE Transactions on Signal Processing Image Processing in EM algorithm for Markov Random Fields (MRF) (Mean Field Methods) Physical Fluctuomatics (Tohoku University) 5 Markov Random Fields for Image Processing In Markov Random Fields, we have to consider not only the states with high probabilities but also ones Hyperparameter with low probabilities. Estimation In Markov Random Fields, we have to estimate not only the image but also hyperparameters Statistical Quantities in the probabilistic model. We have to perform the Estimation of Image calculations of statistical quantities repeatedly. We can calculate statistical quantities by adopting the Gaussian graphical model as a prior probabilistic model and by using Gaussian integral formulas. Physical Fluctuomatics (Tohoku University) 6 Purpose of My Talk Review of formulation of probabilistic model for image processing by means of conventional statistical schemes. Review of probabilistic image processing by using Gaussian graphical model (Gaussian Markov Random Fields) as the most basic example. K. Tanaka: Statistical-Mechanical Approach to Image Processing (Topical Review), J. Phys. A: Math. Gen., vol.35, pp.R81-R150, 2002. Section 2 and Section 4 are summarized in the present talk. Physical Fluctuomatics (Tohoku University) 7 Contents 1. 2. 3. 4. 5. Introduction Probabilistic Image Processing Gaussian Graphical Model Statistical Performance Analysis Concluding Remarks Physical Fluctuomatics (Tohoku University) 8 Bayes Formula and Bayesian Network Pr{B | A} Pr{ A} Pr{ A | B} Pr{B} Prior Probability Data-Generating Process Posterior Probability Bayes Rule Event B is given as the observed data. Event A corresponds to the original information to estimate. Thus the Bayes formula can be applied to the estimation of the original information from the given data. Physical Fluctuomatics (Tohoku University) A B Bayesian Network 9 Image Restoration by Probabilistic Model Noise Transmission Original Image Degraded Image Posterior Pr{Original Image | Degraded Image } Assumption 1: The degraded image is randomly generated from the original image by according to the degradation process. Assumption 2: The original image is randomly generated by according to the prior probability. Prior Likelihood Pr{Degraded Image | Original Image }Pr{Original Image } Pr{DegradedIm age} Marginal Likelihood Bayes Formula Physical Fluctuomatics (Tohoku University) 10 Image Restoration by Probabilistic Model The original images and degraded images are represented by f = (f1,f2,…,f|V|) and g = (g1,g2,…,g|V|), respectively. Original Degraded Image Image ri ( xi , yi ) Position Vector i of Pixel i i fi: Light Intensity of Pixel i gi: Light Intensity of Pixel i in Original Image in Degraded Image Physical Fluctuomatics (Tohoku University) 11 Probabilistic Modeling of Image Random Field of Original Restoration Image F ( F1 , F2 ,..., F|V | ) Random Field of Degraded Image G (G1 , G2 ,..., G|V | ) Posterior Pr{Original Image | Degraded Image } Prior Likelihood Pr{Degraded Image | Original Image }Pr{Original Image } Assumption 1: A given degraded image is obtained from the original image by changing the state of each pixel to another state by the same probability, independently of the other pixels. State Vector of Original Image f ( f1 , f 2 ,..., f |V | ) State Vector of Degraded Image g ( g1 , g 2 ,..., g |V | ) Pr{Degraded Image g | Original Image f } Pr{G g | F f } ( gi , fi ) Random Fields iV Physical Fluctuomatics (Tohoku University) gi gi or fi fi 12 Probabilistic Modeling of Image Restoration Random Field of Original Image F (F , F ,..., F 1 2 |V | State Vector of Original Image f ( f1 , f 2 ,..., f |V | ) Posterior Pr{Original Image | Degraded Image } Prior Likelihood Pr{Degraded Image | Original Image }Pr{Original Image } Assumption 2: The original image is generated according to a prior probability. Prior Probability consists of a product of functions defined on the neighbouring pixels. Pr{Original Image f } Pr{F f } ( f i , f j ) ijE i j Random Fields Product over All the Nearest Neighbour Pairs of Pixels Physical Fluctuomatics (Tohoku University) 13 ) Bayesian Image Analysis PrF f f Prior Probability Original Image PrG g F f g Degradation Process Degraded Image g Posterior Probability PrF f G g V:Set of All the pixels E:Set of all the nearest neighbour pairs of pixels PrG g F f PrF f PrG g ( f i , g i ) ( f i , f j ) iV {i , j}E Image processing is reduced to calculations of averages, variances and co-variances in the posterior probability. Physical Fluctuomatics (Tohoku University) 14 Estimation of Original Image We have some choices to estimate the restored image from posterior probability. In each choice, the computational time is generally exponential order of the number of pixels. (1) fˆ arg max Pr{F z | G g} z (2) fˆi arg max Pr{Fi zi | G g} zi Maximum A Posteriori (MAP) estimation Maximum posterior marginal (MPM) estimation Pr{Fi f i | G g} Pr{F f | G g} f \ fi ˆ arg min z Pr{F z | G g}dz 2 f i i (3) i i Thresholded Posterior Mean (TPM) estimation Physical Fluctuomatics (Tohoku University) 15 Contents 1. 2. 3. 4. 5. Introduction Probabilistic Image Processing Gaussian Graphical Model Statistical Performance Analysis Concluding Remarks Physical Fluctuomatics (Tohoku University) 16 Bayesian Image Analysis by Gaussian Graphical Model Prior Probability V:Set of all the pixels 1 1 2 PrF f | exp f i f j Z PR ( ) 2 {i , j}E 1 2 Z PR ( ) exp zi z j dz1dz2 dz|V | 2 {i , j}E Patterns are generated by MCMC. 0.0001 E:Set of all the nearest-neighbour pairs of pixels f i , 0.0005 0.0030 Markov Chain Monte Carlo Method Physical Fluctuomatics (Tohoku University) 17 Bayesian Image Analysis by Gaussian Graphical Model Degradation Process is assumed to be the additive white Gaussian noise. PrG g F f , f i , gi , 1 2 exp f g i i 2 2 2 iV 2 1 V: Set of all the pixels Original Image f Gaussian Noise n Degraded Image g Degraded image is obtained by adding a white Gaussian noise to the original image. g i f i ~ N 0, 2 Histogram of Gaussian Random Numbers Physical Fluctuomatics (Tohoku University) 18 Bayesian Image Analysis PrF f f Prior Probability Original Image PrG g F f g Degradation Process Degraded Image g Posterior Probability PrF f G g V:Set of All the pixels E:Set of all the nearest neighbour pairs of pixels PrG g F f PrF f PrG g ( f i , g i ) ( f i , f j ) iV {i , j}E Image processing is reduced to calculations of averages, variances and co-variances in the posterior probability. Physical Fluctuomatics (Tohoku University) 19 Bayesian Image Analysis A Posteriori Probability f i , g j , Pr{G g | F f , } Pr{F f | } Pr{F f | G g , , } Pr{G g | , } 1 1 2 2 exp f g exp f f i i i j 2 iV {i , j}E 2 2 ( fi , gi ) ( fi , f j ) ( f i , g i ) ( f i , f j ) iV {i , j}E Physical Fluctuomatics (Tohoku University) 20 Statistical Estimation of Hyperparameters Hyperparameters , are determined so as to maximize the marginal likelihood Pr{G=g|,} with respect to , . (ˆ , ˆ ) arg max Pr{G g | , } , fˆ z Pr{F z | G g, ˆ , ˆ } dz Pr{G g | , } Pr{F z , G g | , }dz Pr{G g | F z , } Pr{F z | }dz y V x Original Image Pr{F f | } f Degraded Image Pr{G g | F f , } g g Marginalized with respect to F Pr{G g | , } Physical Fluctuomatics (Tohoku University) Marginal Likelihood 21 Bayesian Image Analysis f i , g j , A Posteriori Probability Pr{F f | G g , , } Pr{G g | F f , } Pr{F f | } Pr{G g | , } 1 1 exp 2 Z POS g , , 2 f iV gi 2 i 1 2 f i f j 2 {i , j }E 1 1 1 T T exp ( f g )( f g ) fCf 2 Z POS g , , 2 2 1 T 1 T Z POS g, , exp ( z g )( z g ) z C z dz1dz 2 dz|V | 2 2 2 Gaussian Graphical Model f ( f1 , f 2 ,..., f |V | ) g ( g1 , g 2 ,..., g |V | ) z ( z1 , z 2 ,..., z|V | ) |V|x|V| matrix 4 i C j 1 0 Physical Fluctuomatics (Tohoku University) i j {i, j} E otherwise 22 Average of Posterior Probability EF , z Pr{F z | G g, , }dz1 dz 2 dz|V | T 1 I I 2 z exp z g I C z g dz1 dz 2 dz|V | 2 2 2 I 2 C I C T 1 I I 2 exp z g I C z g dz1 dz 2 dz|V | 2 2 2 I 2 C I C I g I 2 C |V | 1 2 T ( z m ) exp 2 ( z m )( I C )( z m) dz1dz 2 dz|V | (0,0,,0) Gaussian Integral formula Physical Fluctuomatics (Tohoku University) 23 Bayesian Image Analysis by Gaussian Graphical Model f i , gi , Posterior Probability 1 Pr{F f | G g, , } exp 2 2 f iV gi 2 i 1 2 f i f j 2 {i , j}E Average of the posterior probability can be calculated by using the multidimensional Gauss integral Formula fˆ z Pr{F z | G g, , } dz I I C 2 |V|x|V| matrix g V:Set of all the pixels E:Set of all the nearest-neghbour pairs of pixels 4 i C j 1 0 i j {i, j} E otherwise Multi-Dimensional Gaussian Integral Formula Physical Fluctuomatics (Tohoku University) 24 Statistical Estimation of Hyperparameters Pr{G g | , } Pr{G g | F z , } Pr{F z | }dz Z POS ( g, , ) (2 2 )|V | / 2 Z PR ( ) Z POS g , , 1 T 1 T exp ( z g )( z g ) z C z dz1dz 2 dz|V | 2 2 2 1 T Z PR exp z C z dz1dz 2 dz|V | 2 y V x Original Image Pr{F f | } f Degraded Image Pr{G g | F f , } g g Marginalized with respect to F Pr{G g | , } Physical Fluctuomatics (Tohoku University) Marginal Likelihood 25 Calculations of Partition Function (2 )|V | 1 Z PR ( ) exp z Cz dz1dz 2 dz|V | 2 |V | det C Z POS ( g , , ) 1 exp 2 2 I z g I 2 C I 2 C T I 1 C T z g g g dz1dz 2 dz|V | 2 2 2 I C I C 1 C exp g g T I 2 C 2 1 exp 2 2 I z g I 2 C I 2 C T I z g dz1dz 2 dz|V | 2 I C (2 2 )|V | 1 C exp g g T det( I 2 C ) I 2 C 2 1 T exp ( z m ) A ( z m ) dz1dz 2 dz|V | 2 Gaussian Integral formula (2 )|V | det A (A is a real symmetric and positive definite matrix.) Physical Fluctuomatics (Tohoku University) 26 Exact expression of Marginal Likelihood in Gaussian Graphical Model Pr{G g | , } Pr{G g | F z , } Pr{F z | }dz Z POS ( g, , ) (2 2 )|V | / 2 Z PR ( ) Multi-dimensional Gauss integral formula det C 1 C T Pr{G g | , } exp g g I 2C 2 2 V det I 2C We can construct an exact EM algorithm. ˆ ,ˆ arg max Pr{G g | , } , fˆ I I C 2 g Physical Fluctuomatics (Tohoku University) y V x 27 Bayesian Image Analysis by Gaussian Graphical Model Iteration Procedure in Gaussian Graphical Model 1 t 12 C 1 C T t Tr g g 2 2 |V | | V | I t 1 t 1 C I t 1 t 1 C g 1 1 t 12 I 1 t 12 t 14 C 2 t Tr g gT |V | I t 1 t 12 C | V | I t 1 t 12 C 2 m (t ) I I (t ) (t ) 2 C g f̂ fˆi (t ) arg min zi mi (t ) 2 zi t 0.0008 0.001 0.0006 0.0004 0.0002 g 0 0 20 40 60 100t 80 Physical Fluctuomatics (Tohoku University) f̂ 28 Image Restoration by Markov Random Field Model and Conventional Filters MSE Original Image Degraded Image Statistical Method 315 Lowpass Filter (3x3) 388 (5x5) 413 Median Filter (3x3) 486 (5x5) 445 MSE 1 ˆ 2 f f i i | V | iV V:Set of all the pixels Restored Image MRF (3x3) Lowpass (5x5) Median Physical Fluctuomatics (Tohoku University) 29 Contents 1. 2. 3. 4. 5. Introduction Probabilistic Image Processing Gaussian Graphical Model Statistical Performance Analysis Concluding Remarks Physical Fluctuomatics (Tohoku University) 30 Performance Analysis x Signal 5 ˆ 2 1 [MSE ] || x x n || 5 n 1 y1 y2 y3 y4 y5 Observed Data Physical Fluctuomatics (Tohoku University) Posterior Probability Additive White Gaussian Noise Sample Average of Mean Square Error x̂1 x̂ 2 x̂3 x̂ 4 x̂5 Estimated Results 31 Statistical Performance Analysis 1 MSE( | , x ) V 2 h ( y, , ) x Pr{Y y | X x, } dy x Original Image y Degraded Image Pr{Y y | X x , } g Additive White Gaussian Noise h ( y, , ) Pr{Y y | X x , } Pr{ X x | Y y, , } Restored Image Additive White Gaussian Noise Physical Fluctuomatics (Tohoku University) Posterior Probability 32 Statistical Performance Analysis 1 MSE( | , x ) V 1 V I 2C x P ( x | y ) dx 2 y x Pr Y y X x dy 1 h y, , 2 h y, , x Pr Y y X x dy 1 2 I C y 4, i j V i C j 1, {i, j} E 0, otherwise Pr Y y X x , 1 exp 2 2 xi yi 2 iV exp( Physical Fluctuomatics (Tohoku University) 1 2 2 2 xy ) 33 Statistical Performance Estimation for Gaussian Markov Random Fields 1 MSE ( | , x ) V 1 V I 1 V I 2 h ( y, , ) x Pr{Y y | X x , } dy 2 C I I 2 C yx 2 1 2 ( y x) |V | 1 2 exp x y dy 2 2 2 1 x x I 2 C 2 I 2 2 C 1 ( y x) x I 2 C I 2 C 2 1 V I 1 V I 2 C ( y x ) I 2C I 2 C x T 1 x 2 1 2 exp y x dy 2 2 1 2 exp y x dy 2 2 |V | 1 2 exp y x dy 2 2 |V | 1 2 exp y x dy 2 2 1 2 C ( y x ) ( I 2 C ) 2 2 1 V xT 2 4 C 2 1 x ( I 2 C ) 2 2 1 x 2 |V | 1 2 exp y x dy 2 2 1 2 exp y x dy 2 2 |V | xT |V | |V | 1 V |V | I 2 C ( y x ) I 2 C I 2 C 1 1 I ( y x)T ( y x ) V ( I 2 C ) 2 2 1 2 C ( y x)T V ( I 2 C ) 2 4, i j V i C j 1, {i, j} E 0, otherwise =0 1 2 exp y x dy 2 2 1 2 4 C 2 T 1 2I Tr x x V ( I 2 C ) 2 | V | ( I 2 C ) 2 Physical Fluctuomatics (Tohoku University) 34 Statistical Performance Estimation for Gaussian Markov Random Fields 1 MSE ( | , x ) V 1 V I 2 h ( y, , ) x Pr{Y y | X x , } dy I 2 C yx 2 1 2 2 |V | 1 2 exp x y dy 2 2 1 T 2 4 C 2 1 2I Tr x x 2 2 V ( I 2 C ) 2 | V | ( I C ) MSE ( | , x ) MSE ( | , x ) 600 =40 600 400 400 200 200 0 0 0 0.001 0.002 0.003 4, i j V i C j 1, {i, j} E 0, otherwise =40 0 Physical Fluctuomatics (Tohoku University) 0.001 0.002 0.003 35 Contents 1. 2. 3. 4. 5. Introduction Probabilistic Image Processing Gaussian Graphical Model Statistical Performance Analysis Concluding Remarks Physical Fluctuomatics (Tohoku University) 36 Summary Formulation of probabilistic model for image processing by means of conventional statistical schemes has been summarized. Probabilistic image processing by using Gaussian graphical model has been shown as the most basic example. Physical Fluctuomatics (Tohoku University) 37 References K. Tanaka: Introduction of Image Processing by Probabilistic Models, Morikita Publishing Co., Ltd., 2006 (in Japanese) . K. Tanaka: Statistical-Mechanical Approach to Image Processing (Topical Review), J. Phys. A, 35 (2002). A. S. Willsky: Multiresolution Markov Models for Signal and Image Processing, Proceedings of IEEE, 90 (2002). Physical Fluctuomatics (Tohoku University) 38 Problem 5-1: Derive the expression of the posterior probability Pr{F=f|G=g,,} by using Bayes formulas Pr{F=f|G=g,,} =Pr{G=g|F=f,}Pr{F=f,}/Pr{G=g|,}. Here Pr{G=g|F=f,} and Pr{F=f,} are assumed to be as follows: 1 1 PrG g F f , exp f i g i 2 2 2 2 2 1 1 PrF f | exp f i f j Z PR ( ) 2 {i , j}E iV 2 1 2 dz1dz2 dz|V | exp z z i j 2 {i , j }E Z PR ( ) [Answer] Pr{F f | G g, , } 1 1 exp 2 Z POS g, , 2 1 exp 2 2 Z PR f iV i 1 2 2 gi f i f j 2 {i , j}E 1 2 2 zi gi 2 zi z j dz1dz2 dz|V | iV {i , j }E Physical Fluctuomatics (Tohoku University) 39 Problem 5-2: Show the following equality. f 1 2 2 iV gi 2 i 1 1 2 fi f j 2 {i , j}E 1 T ( f g )( f g ) f C f 2 2 2 T 4 i C j 1 0 i j {i, j} E otherwise Physical Fluctuomatics (Tohoku University) 40 Problem 5-3: Show the following equality. 1 1 T ( z g )( z g ) z C z 2 2 2 T 1 I 2 z g I C 2 2 2 I C 1 C T g g 2 2 I C Physical Fluctuomatics (Tohoku University) I z g 2 I C T 41 Problem 5-4: Show the following equalities by using the multi-dimensional Gaussian integral formulas. 1 exp 2 2 Z POS g, , 1 2 2 f g i i 2 fi f j dz1dz2 dz|V | iV {i , j }E (2 2 )|V | C 1 T exp g g det( I 2C ) I 2C 2 1 (2 )|V | 2 Z PR ( ) exp f i f j dz1dz2 dz|V | |V | det C 2 {i , j}E Physical Fluctuomatics (Tohoku University) 42 Problem 5-5: Derive the extremum conditions for the following marginal likelihood Pr{G=g|,} with respect to the hyperparameters and . det C 1 C T Pr{G g | , } exp g g 2 V 2 I C 2 2 det I C [Answer] 1 2C 1 C Tr g gT |V | I 2 C | V | I 2 C 1 2 1 2I 1 2 4C 2 Tr g gT |V | I 2C | V | I 2C 2 Physical Fluctuomatics (Tohoku University) 43 Problem 5-6: Derive the extremum conditions for the following marginal likelihood Pr{G=g|,} with respect to the hyperparameters and . det C 1 C T Pr{G g | , } exp g g 2 V 2 I C 2 2 det I C [Answer] 1 2C 1 C Tr g gT |V | I 2 C | V | I 2 C 1 2 1 2I 1 2 4C 2 Tr g gT |V | I 2C | V | I 2C 2 Physical Fluctuomatics (Tohoku University) 44 Problem 5-7: Make a program that generate a degraded image by the additive white Gaussian noise. Generate some degraded images from a given standard images by setting =10,20,30,40 numerically. Calculate the mean square error (MSE) between the original image and the degraded image. MSE 1 f i g i 2 | V | iV Original Image Gaussian Noise Degraded Image K.Tanaka: Introduction of Image Processing by Probabilistic Models, Morikita Publishing Co., Ltd., 2006 . Sample Program: http://www.morikita.co.jp/soft/84661/ Histogram of Gaussian Random Numbers Fi Gi~N(0,402) Physical Fluctuomatics (Tohoku University) 45 Problem 5-8: Make a program of the following procedure in probabilistic image processing by using the Gaussian graphical model and the additive white Gaussian noise. Algorithm: Repeat the following procedure until convergence 1 t 12 C 1 C T t Tr g g 2 2 |V | I t 1 t 1 C | V | I t 1 t 1 C 1 1 t 12 I 1 t 12 t 14 C 2 t Tr g gT |V | I t 1 t 12 C | V | I t 1 t 12 C 2 m (t ) I I (t ) (t ) 2 C g fˆi (t ) arg min zi mi (t ) 2 zi K.Tanaka: Introduction of Image Processing by Probabilistic Models, Morikita Publishing Co., Ltd., 2006 . Sample Program: http://www.morikita.co.jp/soft/84661/ Physical Fluctuomatics (Tohoku University) 46
© Copyright 2026 Paperzz