AP Calculus BC Review Unit 10 Name: _________________________ SHOW ALL WORK! On the test, you will be required to show all of your work. The test will be divided into calculator and no calculator parts. This review is not comprehensive. Please look back over your notes, your homework, and your quizzes to help you study for the test. Topics to study: ☺ Integration by partial fraction decomposition ☺ Integration by parts ☺ L’Hopital’s Rule Evaluate each expression completely: 1. ln( 5 x)dx 6. x 5 dx 8x 15 9. x cos(9 x) 1 x0 x2 5. x 1 x 1 1 13. 3. 3 25 x 2 dx 8. 6 x 2 1 1 3 5 x 3 x e dx 11. lim 3 14. 2x dx x3 x dx 2. 10. 1 4 x sin( 2 x)dx 4. lim 7. ☺ Integration of Inverse Trig & Exponential Base a ☺ Choosing the proper integration technique ☺ Improper Integrals 2 2 6 x 3 x3 12. 1 dx 8 x 25 15. 1 xe4 x dx 2 x2 dx x 39 dx x 12 1 x 2 0 x dx 6x 8 lim x 2e x x 16. 9 x cos(3x 1)dx 9 x cos(3x 1) sin( 3x 1) C (D) 3x sin( 3x 1) cos(3x 1) C 3x 2 sin( 3x 1) C (C) 3x sin( 3x 1) cos(3x 1) C (A) (B) _____________________________________________________________________________________________ 17. Let f (x) be a differentiable function with the properties that lim f ( x 2 3x) 0 and x0 lim f ' ( x 2 3x) 4 . Find lim x0 x0 f ( x 3x) sin x 2 (A) 0 (B) 3 (C) 4 (D) 12 (E) nonexistent _____________________________________________________________________________________________ 18. Let f ( x) k , where x 0 and k is some finite positive constant, as shown in the graph. Let x 1 0 1 L f ( x)dx and M f ( x)dx . Which of the following statements is true? (A) L M (B) L M (C) L M (D) The relative values of L and M depend on the value of k. (E) No conclusion can be made about the relative values of L and M. _____________________________________________________________________________________________ 19. The area of the region bounded by the graphs of (A) 2 ln( 2) 1 (B) y xex , x 0 , x ln 2 and the x-axis is 2 ln( 2) (C) ln( 2) (D) 2 ln( 2) 1 (E) ln( 2) 1 _____________________________________________________________________________________________ 2 2 20. Let f(x) be a differentiable function with the properties that f(1) = 5 and lim f ( x) 8 . x (A) -13 (B) -8 (C) 0 (D) 5 f ' ( x)dx = 1 (E) 21. cos x e x x0 ln( 1 x) lim (A) 0 (B) -1 (C) 1 (D) e (E) _____________________________________________________________________________________________ 22. Which of the following is an improper integral? Explain your answer 0 (A) 4 4 (C) 2 dx x4 (B) x 2 2 xdx 0 1 x 2 (D) 1 dx 9 2 dx x (E) none of these _____________________________________________________________________________________________ x 23. Let F ( x) 5tet dt for t 0 and x 0 . The graph of f (t ) 5tet is shown. 0 (A) Find an expression for F (x) , in terms of x only, that does not involve an integral. (B) Using your answer in part (A), find lim F ( x ) . Justify your answer. x (C) Using your answer in part (B), explain what is meant by the expression lim F ( x ) . x _____________________________________________________________________________________________ 2x 23. Calculator allowed. Let g be the function defined for x 1 and g is defined by g ( x) Write the equation of the tangent line to g at x 2 . te t dt . 1 _____________________________________________________________________________________________ dy 2 y ( x 1) . Let y f (x) be the particular solution to this dx f ( x) 1 differential equation with the initial condition f (0) 1 . Find lim . (Hint: First show that the limit is x0 3 sin( 2 x) 24. Consider the differential equation indeterminate)
© Copyright 2026 Paperzz