Uplink Open Loop Power Control Recommendations for IEEE 802.16m Amendment IEEE 802.16 Presentation Submission Template (Rev. 9) Document Number: IEEE S802.16m-09/0703 Date Submitted: 2009-03-07 Source: Rongzhen Yang, Ali T. Koc, Papathanassiou Apostolos, Wei Guan, Hujun Yin, Nageen Himayat, Yang-seok Choi, Shilpa Talwar Intel Corporation E-mail: [email protected] [email protected] Venue:. Re: IEEE 802.16m-09/0012, “Call for Contributions on Project 802.16m Amendment Working Document (AWD) Content”. Target topic: “Power Control” Base Contribution: IEEE C802.16m-09_0546 Purpose: To discuss and adopt the proposed text of IEEE C802.16m-09_0546 in the next revision of the 802.16m Amendment. Notice: This document does not represent the agreed views of the IEEE 802.16 Working Group or any of its subgroups. It represents only the views of the participants listed in the “Source(s)” field above. It is offered as a basis for discussion. It is not binding on the contributor(s), who reserve(s) the right to add, amend or withdraw material contained herein. Release: The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE’s name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE’s sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.16. Patent Policy: The contributor is familiar with the IEEE-SA Patent Policy and Procedures: <http://standards.ieee.org/guides/bylaws/sect6-7.html#6> and <http://standards.ieee.org/guides/opman/sect6.html#6.3>. Further information is located at <http://standards.ieee.org/board/pat/pat-material.html> and <http://standards.ieee.org/board/pat >. Uplink Power Control Review IEEE 802.16m system requirements from SRD • • Average User Throughput Cell edge Throughput IEEE 802.16m description at SDD: • Open Loop Power Control (OLPC) – – • Closed Loop Power Control (CLPC) – – • Tradeoff between overall system throughput and cell edge performance Interference controlled by the information broadcasted from ABS Fast power control Limit the overhead of the signaling Coupling of CLPC and OLPC – Provides high efficiency with reduced signaling overhead Interference Control for uplink MIMO Maximum Sector Throughput Method SINR Target Method: SINRMIN 1 SINROpt 10 log 10 max 10^ ( ), SIRDL 10 Nr ( Detail derivation shown in backup) SINRMIN: is the SINR requirement for the minimum rate expected by ABS, is set by the power control message. : is the fairness and IoT control factor, decided by ABS. Nr : is the number of receive antennas at ABS. SIRDL: is the ratio of downlink signal vs. interference power at one AMS receive antenna, measured by AMS Multi-Modes OLPC for Legacy and Enhancement Support Tx Power calculation for per Tx-antenna per subcarrier: P( dBm ) L SINRT arg et NI Offset _ AMS perAMS Offset _ ABS perAMS • SINRT arg et is the target uplink SINR using different methods: – Mode 1 (Legacy Mode) & Mode 2 (Enhanced Mode): C / N 10 log 10( R), SINRt arg et SINROPT , mod e 1 mod e 2 • Mode selection, control factors and system information are indicated at power control message Uplink SLS Evaluation for Enhanced Mode Gamma value Sector throughput (in Mbps) Cell-edge throughput (in Kbps) Sector SE Cell-Edge SE 0.2 1.3865 104 0.8146 0.0611 0.4 1.5655 95.6 0.9198 0.0562 0.6 1.7056 77.2 1.002 0.0454 0.8 1.7895 58.8 1.0514 0.0345 1.0 1.8619 41.2 1.0939 0.0242 CDF of Throughput CDF of User Throughput, Enhanced mode 1 0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5 0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 0 • 6 uplink data symbols (one subframe) per frame • 25% control overhead is assumed for SE calculation • Detailed settings in appendix gamma=0.2 gamma=0.4 gamma=0.6 gamma=0.8 gamma=1.0 500 Throughput(kbps) Performance Curve and IoT Control Performance curve CDF of Sector IoT, Enhanced mode 0.065 1 0.06 0.9 0.055 0.8 0.7 CDF of IoT Cell-edge SE 0.05 0.045 0.04 0.035 0.5 0.4 0.3 0.03 gamma=0.2 gamma=0.4 gamma=0.6 gamma=0.8 gamma=1.0 0.2 0.025 0.02 0.8 0.6 0.1 0.85 0.9 0.95 Sector SE 1 1.05 1.1 0 0 5 10 15 20 IoT(dB) • IoT (Interference) can be stably controlled by gamma value • Tradeoff between overall system throughput and cell edge performance can be decided by gamma value 25 Recommendations • Legacy OLPC is extended to multi-modes to support both optimum power setting method and legacy method • Proposed enhancement method is selected to support: – Interference Control – Tradeoff between overall system throughput and cell edge performance Appendix • Parameters for UL SLS Evaluation • Full Tx power performance comparison • Maximum Sector Throughput Method Derivation SLS Simulation settings Parameter Value Parameter Value Carrier frequency (GHz) 2.5 GHz Site to site distance (m) 500m System bandwidth (MHz) 10 MHz Channel eITU-Ped B, 3km/h Reuse factor 1 Max power in MS (dBm) 23dBm Frame duration (Preamble+DL+UL) 5ms Antenna Config 1x2 SIMO Number of OFDM symbols in UL Frame 6 HARQ On (Max retrans: 4/Sync) FFT size (tone) 1024 Target PER 0.2 Useful tone 864 Link to system mapping RBIR Number of LRU 48 Scheduler type PF LRU type CRU Resource Assignment Block 4 LRU Number of users per sector 10 Penetration loss (dB) 20dB CMIMO support no Control Overhead 25% Algorithm Simulation Settings Parameter Value (0.2, 0.4, 0.6, 0.8, 1.0) N CLHome i 1 CL Neighbor , i SIRDL Simulation SINRMIN Notes: SIRDL PDL,H / PDL, I 1 0dB N CLHome i 1 CL Neighbor,i 1 - PDL,H PT / CLHome is the received signal power of downlink preamble, CLHome is the channel loss to the home cell. (only slow fading is considered) N - PDL,Neighbor PT / CLNeighbor,i is the downlink received interference signal power i 1 from N (N=8) strongest neighbor cells. CLNeighbor,i is the channel loss to the ith neighbor cell. (only slow fading is considered) Full Tx Power Comparison Gamma value Sector throughput (in Mbps) Cell-edge throughput (in Kbps) Sector SE Cell-Edge SE 0.2 1.39 108.9024 0.8166 0.064 0.4 1.5915 97.9968 0.935 0.0576 0.6 1.7364 84.1728 1.0202 0.0495 0.8 1.8034 66.048 1.0595 0.0388 1.0 1.8669 49.6128 1.0968 0.0291 Full Power 0.943 6.144 0.554 0.0036 CDF of User Throughput CDF of Sector IoT 1 1 0.95 0.9 0.9 0.85 0.8 0.8 0.75 0.7 0.6 CDF of IoT CDF of Throughput 0.7 0.65 0.55 0.5 0.45 0.6 0.5 0.4 0.4 0.35 0.3 gamma=0.2 0.25 gamma=0.4 0.2 gamma=0.6 0.15 gamma=0.8 0.1 gamma=1 0.05 Full power gamma=0.2 0.3 gamma=0.4 gamma=0.6 0.2 gamma=0.8 gamma=1 0.1 Full power 0 0 0 500 0 10 20 30 40 50 IoT(dB) Throughput(kbps) All settings are same except the power control schemes 60 70 80 90 Maximum Sector Throughput Method Derivation (1) Initial Modeling For one MS: • Channel Loss: the channel loss (include pathloss and fading) form MS to strong BSs can be measured by preamble signal strength, top N: CL0, CL1, CL2, .. CLN, CL0 is the channel loss to home sector. • NI (Noise plus Interference): Home and neighbor sectors information are modeled as (NI0, NI1, NI2, …, NIN) When one MS increases Tx PSD, it will bring SE gain and cause SE loss to neighbor sectors (SU-SISO): SEgain log( 1 SINRNew ) log( 1 SINROrig ) SEloss (i ) log( 1 SINR(i )Orig ) log( 1 SINR(i ) New ) 1 SINRNew log( ) 1 SINROrig Si 1 SINR(i )Orig NIi log( ) log( ) Si 1 SINR(i ) New 1 NIi I i SINROrig 1 PSD0 / CL0 , PSDNew PSD0 PSD NI0 PSD CL0 SE gain log( 1 ) PSD0 NI0 CL0 log( 1 I i I i ) log( 1 ) NIi Si NIi Then, total SE loss is: N SEloss SEloss (i ) i 1 In theory, the Maximum Sector Throughput will be got when SE gain SEloss, PSD 0 I i P CLi Maximum Sector Throughput Method Derivation (2) Simplification Assumptions • One virtual neighbor sector: the channel loss to all neighbor sectors are difficult to be accurately measured in real environment, we assume one virtual neighbor sector that accounts for accumulated downlink interferences PDL,I P P T ,Pr eamble T ,Pr eamble CLI CLi i 1~ N SIRDL PDL,H PDL,I 1 CLI CL i 1~ N i SIRDL 1 CLI CLH Then, we can get the Maximum Sector Throughput derivation for SU-SISO system: SINRT arg et NI I 1 1 NI H SINRI SIRDL 1 SINRT arg et SIRDL 1 Gamma is used as the control factor to control the interference to other sectors Maximum Sector Throughput Method Derivation (3) SU-MIMO Consideration Nr receive antenna for ABS: 1 SINRNew, MRC SEGain log 1 SINR Orig , MRC N r ( PSDtx PSDtx ) N r PSDtx 1 CLH NI H , Ant CLH log 1 log N r PSDtx N PSDtx 1 NI H , Ant r CLH NI H , Ant CLH I SE SEGain SE Loss 1 SINR I SELoss log 1 SINR I New , MRC I Orig , MRC N SNRI , Ant PNoise , Ant 1 r NI I , Ant log N r SNRI , Ant PNoise , Ant 1 NI I , Ant PSDtx / CLI PSDtx CL NI N SNR P I I , Ant r I , Ant Noise , Ant log 1 N r SNRI , Ant PNoise , Ant NI I , Ant PSDtx / CLI 1 NI I , Ant PSDtx / CLI PSDtx, Ant N r * PSDtx, Ant CLI * NI I , Ant N r * SNRI , Ant * PNoise, Ant CLH 0( PSDtx, Ant 0) N r * PSDtx, Ant N r * SNRI , Ant * PNoise, Ant NI I , Ant PSDtx, Ant / CLI NI H , Ant 1 CLH NI I , Ant PSDtx, Ant / CLI SINRI , Ant N * PSDtx, Ant NI I , Ant 1 CLH / CLI CL NI H , Ant r 1 N r * SINRI , Ant * I * N r * PSDtx, Ant 1 N r * SINRI , Ant NI I , Ant CLH CLH SINRI , Ant NI H , Ant CLH CL NI I , Ant CL PSDtx, Ant 1 N r * SINRI , Ant * I * NI H , Ant * H CLH SINRI , Ant Nr CL * NI I , Ant * 1 N r * SINRI , Ant * I NI H , Ant * CLH SINRI , Ant PSDtx, Ant 1 Nr SINRH , Ant PSDtx, Ant 1 CLH * NI H , Ant N r CL * NI I , Ant * 1 N r * SINRI , Ant * I 1 SINRI , Ant * CLH * NI H , Ant NI I , Ant 1 1 * SIRDL * 1 NI H , Ant N r * SINRI , Ant Nr SINRT arg et SIRDL 1 Nr Gamma is used as control factor to control the interference to other sectors Maximum Sector Throughput Method Derivation (4) MU-MIMO Consideration Four study cases for consideration: • Home sector SU and virtual neighbor sector SU (already done for SU-MIMO) • Home sector MU and virtual neighbor sector SU • Home sector SU and virtual neighbor sector MU • Home sector MU and virtual neighbor sector MU Maximum Sector Throughput Method Derivation (5) Home sector MU and virtual neighbor sector SU 1 SINRNew ,MRC 1 SINRNew ,MRC log SEGain 2 * log 1 SINR 1 SINR Orig, MRC Orig, MRC N r * PSDtx, Ant CLH log 1 N * PSDtx, Ant NI H , Ant r CLH 2 N * PSDtx, Ant 2* r CLH log 1 N * PSDtx, Ant NI H , Ant r CLH 2 I SELoss N * SNRI , Ant * PNoise, Ant 1 r I 1 SINROrig NI I , Ant , MRC log log I N * SNR * P 1 SINR r I , Ant Noise, Ant New , MRC 1 NI I , Ant 2 * PSDtx, Ant / CLI 2 * PSDtx, Ant CLI * NI I , Ant N r * SNRI , Ant * PNoise, Ant log 1 N r * SNRI , Ant * PNoise, Ant NI I , Ant 2 * PSDtx, Ant / CLI 1 NI I , Ant 2 * PSDtx, Ant / CLI I SE SEGain SE Loss 0( PSDtx, Ant 0) 2 * PSDtx, Ant N r * PSDtx, Ant CLI * NI I , Ant N r * SNRI , Ant * PNoise, Ant CLH N * PSDtx, Ant N r * SNRI , Ant * PNoise, Ant NI I , Ant 2 * PSDtx, Ant / CLI NI H , Ant r 1 CLH NI I , Ant 2 * PSDtx, Ant / CLI 2* SINRI , Ant 1 CLH / CLI N * PSDtx, Ant 1 N r * SINRI , Ant NI I , Ant NI H , Ant r CLH CL NI I , Ant CL PSDtx, Ant 1 N r * SINRI , Ant * I * NI H , Ant * H CLH SINRI , Ant Nr SINRH , Ant NI I , Ant 1 1 * SIRDL * 1 NI H , Ant N r * SINRI , Ant Nr Maximum Sector Throughput Method Derivation (6) Home sector SU and virtual neighbor sector MU 1 SINRNew ,MRC 1 SINRNew ,MRC log SEGain log 1 SINR 1 SINR Orig, MRC Orig, MRC N r * PSDtx, Ant CLH log 1 N r * PSDtx, Ant NI H , Ant CLH I SELoss PSDtx, Ant I 1 SINROrig,MRC CLI * NI I , Ant N r * SNRI , Ant * PNoise, Ant log 1 2 * log I N * SNR * P NI I , Ant PSDtx, Ant / CLI r I , Ant Noise, Ant 1 SINRNew ,MRC 1 NI PSD / CL I , Ant tx, Ant I PSDtx, Ant 2* CLI * NI I , Ant N r * SNRI , Ant * PNoise, Ant log 1 N r * SNRI , Ant * PNoise, Ant NI I , Ant PSDtx, Ant / CLI 1 NI I , Ant PSDtx, Ant / CLI I SE SEGain SELoss 0( PSDtx, Ant 0) PSDtx, Ant N r * PSDtx, Ant 2* CLI * NI I , Ant N r * SNRI , Ant * PNoise, Ant CLH N * PSDtx, Ant N * SNRI , Ant * PNoise, Ant NI I , Ant PSDtx, Ant / CLI NI H , Ant r 1 r CLH NI I , Ant PSDtx, Ant / CLI 1 CLH / CLI / 2 SINRI , Ant N * PSDtx, Ant 1 N r * SINRI , Ant NI I , Ant NI H , Ant r CLH Define CLI CLI / 2 , then * 1 N * SINR 1 CL * NI PSD * NI tx , Ant Nr I I , Ant r SINRI , Ant I , Ant H , Ant * CLH 1 CL * NI I , Ant * 1 N r * SINRI , Ant * * I NI H , Ant * CLH SINRI , Ant 2 PSDtx, Ant 1 Nr SINRH , Ant 1 NI I , Ant 1 1 * SIRDL * * 1 2 NI H , Ant N r * SINRI , Ant Nr 2 Maximum Sector Throughput Method Derivation (7) Home sector MU and virtual neighbor sector MU 1 SINRNew ,MRC 1 SINRNew ,MRC log SEGain 2 * log 1 SINR 1 SINR Orig, MRC Orig, MRC N r * PSDtx, Ant CLH log 1 N * PSDtx, Ant NI H , Ant r CLH 2 N * PSDtx, Ant 2* r CLH log 1 N r * PSDtx, Ant NI H , Ant CLH 2 I SELoss PSDtx, Ant 2* I 1 SINROrig CL N r * SNRI , Ant * PNoise, Ant , MRC I * NI I , Ant log 1 2 * log I N * SNR * P NI I , Ant 2 * PSDtx, Ant / CLI r I , Ant Noise, Ant 1 SINRNew ,MRC 1 NI I , Ant 2 * PSDtx, Ant / CLI PSDtx 4* CL * NI N * SNR * P I I , Ant r I , Ant Noise, Ant log 1 N r * SNRI , Ant * PNoise, Ant NI I , Ant 2 * PSDtx, Ant / CLI 1 NI I , Ant 2 * PSDtx / CLI I SE SEGain SELoss 0( PSDtx, Ant 0) 4 * PSDtx, Ant N r * PSDtx, Ant CLI * NI I , Ant N r * SNRI , Ant * PNoise, Ant CLH N * PSDtx, Ant N r * SNRI , Ant * PNoise, Ant NI I , Ant 2 * PSDtx, Ant / CLI NI H , Ant r 1 CLH NI I , Ant 2 * PSDtx, Ant / CLI 2* 1 CLH / CLI / 2 SINRI , Ant N * PSDtx, Ant 1 N r * SINRI , Ant NI I , Ant NI H , Ant r CLH Define CLI CLI / 2 , then PSDtx, Ant 1 Nr CL * NI I , Ant * 1 N r * SINRI , Ant * I NI H , Ant * CLH SINRI , Ant 1 CL * NI I , Ant * 1 N r * SINRI , Ant * * I NI H , Ant * CLH SINRI , Ant 2 PSDtx, Ant 1 Nr SINRH , Ant 1 NI I , Ant 1 1 * SIRDL * * 1 2 NI H , Ant N r * SINRI , Ant Nr 2 Maximum Sector Throughput Method Derivation (8) MU-MIMO Study Summary Virtual neighbor Sector SU: SINRH , Ant NI I , Ant 1 1 * SIRDL * 1 NI H , Ant N r * SINRI , Ant Nr NI I , Ant 1 1 * SIRDL * 1 2 NI H , Ant N r * SINRI , Ant Nr Virtual neighbor Sector MU: SINRH , Ant 1 * Conclusions: • For MU-MIMO, same power control formula can be applied SINRT arg et SIRDL 1 Nr • When AMS, MS perform MU/SU switching, the Tx power should not be changed • The gamma is used to control interference, if neighbor sectors have higher percentage of MU selection, the gamma value can be decreased to reduce interference
© Copyright 2026 Paperzz