MER301: Engineering Reliability LECTURE 7: Chapter 3: 3.12-3.13 Functions of Random Variables, and the Central Limit theorem L Berkley Davis Copyright 2009 MER035: Engineering Reliability Lecture 7 1 Summary Functions of Random Variables Linear Combinations of Random Variables Non-Independent Random Variables Non-linear Functions of Random Variables Central Limit Theorem L Berkley Davis Copyright 2009 MER301: Engineering Reliability Lecture 7 2 Functions of Random Variables In most cases, the independent variable Y will be a function of multiple x’s Y fn( x1 , x2, ,...xi ) The function may be linear or nonlinear, and the x variables may be independent or not… L Berkley Davis Copyright 2009 MER301: Engineering Reliability Lecture 7 3 Functions of Random Variables (3-27) (3-28) L Berkley Davis Copyright 2009 MER301: Engineering Reliability Lecture 7 4 Exercise 7.1: Linear Combination of Independent Random Variables-Tolerance Example Assembly formed from parts A,B,C Mean and Std Dev for the parts are 10mm/0.1mm for A, 2mm/0.05mm for both B and C Dimensions are independent Find the Mean/Std Dev of the gap D ,and find the probability D is less than 5.9mm 3-42 3-181 L Berkley Davis Copyright 2009 MER301: Engineering Reliability Lecture 7 5 Exercise 7.1: Linear Combination of Independent Random Variables-Tolerance Example: Solution We have D A B C The Expected Value of D is given by D E( D) E( A) E( B) E(C) 10 2 2 6mm The Variance of D is V ( D) D2 0.12 0.052 0.052 0.015 And the Standard Deviation is D 0.1225 The probability D<5.9 is P( D 5.9) P( D D ) / D (5.9 6) / 0.1225 PZ D 0.82 and L Berkley Davis Copyright 2009 P 0.2072 MER301: Engineering Reliability Lecture 7 6 Non-Independent Random Variables In many cases, random variables are not independent. Examples include: Discharge pressure and temperature from a gas turbine compressor Cycles to crack initiation of a metal subjected to an alternating stress… L Berkley Davis Copyright 2009 MER301: Engineering Reliability Lecture 7 7 Non-Independent Random Variables P3 18 16 14 10 8 T3 825 783 736 618 547 (3-29) L Berkley Davis Copyright 2009 MER301: Engineering Reliability Lecture 7 8 Independent Random Variables Independent Variable Example X1 X2 X1*X2 8.29 7.49 8.65 6.83 4.58 10.73 7.22 9.75 11.35 1.91 9.17 8.24 10.4 8.52 6.43 9.05 10.38 5.5 8.52 8.95 14 12 10 X2 8 6 4 2 0 0 2 8.27 8.94 7.91 8.66 9.29 8.44 7.99 11.79 9.44 9.28 6.85 Independent Variables X1 and X2 5.87 10.8 8.15 7.19 5.07 8.44 9.99 7.74 9.12 L Berkley Davis Copyright 2009 4 6 X1 8 10 12 68.56 66.96 68.42 59.15 42.55 90.56 57.69 114.95 107.14 17.72 62.81 48.37 112.32 69.44 46.23 45.88 87.61 54.95 65.94 81.62 X1 Mean Standard Error Median Mode Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Sum Count X2 8.098 0.505719706 8.52 8.52 2.26164728 5.115048421 1.710429055 -1.118926452 9.44 1.91 11.35 161.96 20 8.4615 0.346079756 8.44 8.44 1.547715719 2.395423947 0.834027522 -0.120633666 6.72 5.07 11.79 169.23 20 X1*X2 68.4435 5.546376687 66.45 #N/A 24.8041506 615.2458871 0.052461383 0.306733797 97.23 17.72 114.95 1368.87 20 Correlation of X1 and X2 -0.023160446 (3-29) Non-Independent Random Variables % Area Salt Conc X*Y 0.19 3.8 0.722 0.15 0.57 0.4 0.7 0.67 0.63 0.47 0.75 0.6 0.78 0.81 0.78 0.69 1.3 1.05 1.52 1.06 1.74 1.62 5.9 14.1 10.4 14.6 14.5 15.1 11.9 15.5 9.3 15.6 20.8 14.6 16.6 25.6 20.9 29.9 19.6 31.3 32.7 0.885 8.037 4.16 10.22 9.715 9.513 5.593 11.625 5.58 12.168 16.848 11.388 11.454 33.28 21.945 45.448 20.776 54.462 52.974 Salt Conc vs % Area 35 % Area covered by Roads 30 25 20 15 10 5 0 0 L Berkley Davis Copyright 2009 0.5 1 Salt Conc 1.5 2 %Area %Area Mean Standard Error Median Mode Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Sum Count 0.824 0.09828369 0.725 0.78 0.43953803 0.19319368 -0.0119903 0.7007578 1.59 0.15 1.74 16.48 20 Correlation of Salt and Area 0.9754034 Salt Conc 17.135 1.768038982 15.3 14.6 7.906910702 62.51923684 -0.112043442 0.54447337 28.9 3.8 32.7 342.7 20 X*Y 17.33965 3.666446048 11.421 #N/A 16.3968452 268.8565325 0.898247041 1.398094431 53.74 0.722 54.462 346.793 20 (3-29) Functions of Non-Independent Random Variables 2 Y 2 X1 L Berkley Davis Copyright 2009 2 X2 2 X3 2 X4 cov( X 1 , X 2 ) cov( X 1 , X 3 ) cov( X 1 , X 4 ) 2 cov( X , X ) cov( X , X ) cov( X , X ) 2 3 2 4 3 4 Non-Linear Functions Physics dictate many engineering phenomena are described by non-linear equations.Examples include Heat Transfer Fluid Mechanics Material Properties Non-Linear Functions introduce the concept of Propagation of Errors when doing Probabilistic Analysis L Berkley Davis Copyright 2009 MER301: Engineering Reliability Lecture 7 12 Non-Linear Functions (3-37) (3-38) These equations are used in many aspects of engineering, including analysis of experimental data and the analysis of transfer functions obtained from Design of Experiment results L Berkley Davis Copyright 2009 MER301: Engineering Reliability Lecture 7 13 Analytical Prediction of Variance The Partial Derivative(Propagation of Errors) Method can be used to estimate variation when an analytical model of Y as a function of X’s is available Y fn X , X , X ,........, X 1 Y 2 2 Y 3 2 X2 X2 Y2 X 1 X 2 1 2 n Y X N 2 2 X n This approach can be used to estimate the variance for either physics based models or for empirical models L Berkley Davis Copyright 2009 MER301: Engineering Reliability Lecture 7 14 Example 7.2: Non-Linear 4 Functions P I R 2 P 2 I R 3-44 3-32 and 3-33 I2 R 202 80 32000watts L Berkley Davis Copyright 2009 MER301: Engineering Reliability Lecture 7 15 2 Random Samples,Statistics and Central Limit Theorem L Berkley Davis Copyright 2009 MER301: Engineering Reliability Lecture 7 16 X diameter Impact of Measurement System Variation on Variation in Experimental Data P(0.2485 X 0.2515) 0.919 0.2508 0.0005 actual actual Impact of Measurement System Variation on Variation in Experimental Data Impact of Measurement System Variation on actual Variation in Experimental Data Impact of Measurement System Variation on actual Variation in Experimental Data actual Impact of Measurement System Variation on actual actual USL LSL Variation in Experimental Data actual 2 2 obs actual m System Variation on Impact of Measurement actual actual USL LSL Variation in Experimental Data actualsystem Product 2 obs Measurement 2 variance = Product Product Mean Impact of Measurement = Std. Dev. actual variance m System Variation on actual actual USL Observed Defects LSL Variation in Experimental Data actualsystem Product 2t m obsmeasuremen Measurement 2 actImpact =actual variance Product Mean of Measurement = Product Std. Dev. actual variance m System Variation on Actual Defects obs observed actual LSL obs USL LSL actual USL Observed Defects Variation in Experimental Data actualsystem Product 2t m obsmeasuremen Measurement 2 actImpact =actual variance Product Mean of Measurement = Product Std. Dev. actual variance m System Variation on Actual Defects obs observed actual LSL obs USL LSL actual USL Observed Defects Variation in Experimental Data actualsystem Product 2t m obsmeasuremen Measurement 2 actImpact =actual variance Product Mean of Measurement = Product Std. Dev. actual variance m System Variation on Actual Defects obs observed actual LSL obs USL LSL actual USL Observed Defects Variation in Experimental Data actualsystem Product 2t m obsmeasuremen Measurement 2 actImpact =actual variance Product Mean of Measurement = Product Std. Dev. actual variance m System Variation on Actual Defects obs observed actual LSL obs USL LSL actual USL Observed Defects Variation in Experimental Data actualsystem Product Measurement 2t m obsmeasuremen actual m2 act =actual variance variance Product Mean Unio n Coll eg e Mec ha nic al Engi ne eri ng LSL actual USL MER30 1: Engi ne erin g R eliability Le ct ur e 1 6 Unio n Coll eg e Mec ha nic al Engi ne eri ng obs 2 actual 2 m MER30 1: Engi ne erin g R eliability Le ct ur e 1 6 Unio n Coll eg e Mec ha nic al Engi ne eri ng MER30 1: Engi ne erin g R eliability Le ct ur e 1 6 Unio n Coll eg e Mec ha nic al Engi ne eri ng P( X 1 and X 2 ... X 10 ) ==PProduct ( X 1 )Std. P( X ) ... P( X 10 ) Product MeanDev. 2 MER30 1: Engi ne erin g R eliability Le ct ur e 1 6 obs LSL Product variance Measurement system variance Observed Defects LSL Unio n Coll eg e Mec ha nic al Engi ne eri ng L Berkley Davis Copyright 2009 obs USL act actualm measuremen t Actual Defects obs observed = Product Std. Dev. obs observed Observed Defects USL LSL Actual actualDefects USL Unio n Coll eg e Mec ha nic al Engi ne eri ng LSL actual m obsmeasuremen t variance actual m act =actual variance Product Mean = Product Std. Dev. obs observed USL LSL Actual actualDefects Observed Defects USL Unio n Coll eg e Mec ha nic al Engi ne eri ng 2t m obsmeasuremen actual act =actual variance variance Product Mean = Product Std. Dev. obs observed Observed Defects actualsystem Measurement 2 Product MER30 1: Engi ne erin g R eliability Le ct ur e 1 6 obs LSL actualsystem Measurement 2 2 Product MER30 1: Engi ne erin g R eliability Le ct ur e 1 6 obs m USL LSL Actual actualDefects USL Unio n Coll eg e Mec ha nic al Engi ne eri ng obs LSL 2t m obsmeasuremen actual act =actual variance variance Product Mean = Product Std. Dev. Actual Defects obs observed Observed Defects Product MER30 1: Engi ne erin g R eliability Le ct ur e 1 6 USL Unio n Coll eg e Mec ha nic al Engi ne eri ng obs LSL Unio n Coll eg e Mec ha nic al Engi ne eri ng LSL Unio n Coll eg e Mec ha nic al Engi ne eri ng m m measuremen act =actual variance Product MeanDev. t variance = Product Std. Actual Defects obs observed Observed Defects Product MER30 1: Engi ne erin g R eliability Le ct ur e 1 6 USL obs Measurement system 2 MER30 1: Engi ne erin g R eliability Le ct ur e 1 6 USL Measurement system act actualm measuremen t obs observed Actual Defects MER30 1: Engi ne erin g R eliability Le ct ur e 1 6 MER30 1: Engi ne erin g R eliability Le ct ur e 1 6 MER301: Engineering Reliability Lecture 6 17 Example 7.3: Throwing Dice.. L Berkley Davis Copyright 2009 MER301: Engineering Reliability Lecture 7 18 Dice Example Dice 1 3 3,1 3,2 3,3 3,4 3,5 3,6 1 2 4 5 6 1 1,1 2,1 4,1 5,1 6,1 2 1,2 2,2 4,2 5,2 6,2 Dice 2 3 1,3 2,3 4,3 5,3 6,3 4 1,4 2,4 4,4 5,4 6,4 5 1,5 2,5 4,5 5,5 6,5 6 1,6 2,6 4,6 5,6 6,6 36 Elementary Outcomes Probability of a specific outcome is 1/36 Probability of the event “sum of dice equals 7” is 6/36 Addition-P(A or B) Events “sum=7” and “sum=10” mutually exclusive P=(6/36+3/36) Events “sum=7” and “dice 1=3” not mutually exclusive P=(11/36) Multiplication-P(A and B) Events A=(6,6) and B=(6,6 repeated) are independent P=(1/36)2 Event A= (6,6) given B=(n1=n2=even) are not independent P=(1/3) L Berkley Davis Copyright 2009 MER301: Engineering Reliability Lecture 7 19 Central Limit Theorem (3-39) L Berkley Davis Copyright 2009 MER301: Engineering Reliability Lecture 7 20 Central Limit Theorem Impact of Measurement System Variation on Variation in Experimental Data actual 3 actual LSL 16 Sample Data Sets- mean =48, standard deviation= 3 actual 48 USL Set 1 1 2 Expect X 48 S 3obs LSL L Berkley Davis Copyright 2009 45.93 2 48.73 42.93 actual 2 42.46 m 44.17 Set 4 51.83 Set 5 Set 6 Set 7 Set 8 Set 9 51.6 53.2 41.45 47.3 51.29 45.07 45.68 41.65 46.3 46.79 48.4 46.9 47.02 46.89 52.03 47.74 47.44 46.46 53.92 4 50.6 55.13 46.04 52.98 43.16 49.62 50.71 53.76 47.75 5 Product 46.43 50.03 46.86 Measurement system 45.46 50.27 43.67 variance 43.44 46.91 47.9 varianceMean = Product Product = Std. Dev. 48.08 47.03 54.58 42.77 50.27 Observed 49.4 50.62 49.79 Defects 45.79 40.27 52.34 44.16 46.04 43.88 44.65 50.08 48.97 45.18 8 47.28 48.39 48.42 m 49.67 measuremen t45.27 act actual 46.09 45.23 51.33 44.4 51.91 48.34 48.01 49.36 Actual Defects obs48.64 observed 49.85 44.92 51.71 53.65 49.46 48.22 50.49 9 50.59 10 52.33 11 49.33 12 46.64 MER30 1: Engi ne erin g R eliability Le ct ur e 1 6 13 48.13 14 49.77 15 46.25 16 47.3 43.32 47.92 47.07 51.91 49.37 51.42 43.9 48.56 50.13 44.84 45.48 42.72 50.07 47.56 53.98 49.63 49.92 42.68 45.54 49.65 52.89 45.66 46.3 47.25 54.62 50.48 46.71 47.65 48.91 51.23 48.26 44.34 7 for a set of sample data Unio n Coll eg e Mec ha nic al Engi ne eri ng 47.1 44.74 obs Set 3 3 6 USL Set 2 46.43 46.04 53.56 49.6 56.51 50.55 46.35 46.99 49.64 51.76 49.54 50.55 51.11 47.05 50.64 46.18 50.41 48.43 46.68 52 Central Limit Theorem Impact of Measurement System Variation on Variation in Experimental Data actual 3 actual LSL actual 48 1 USL 2 3 4 LSL obsSample USL Unio n Coll eg e Mec ha nic al Engi ne eri ng L Berkley Davis Copyright 2009 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Set 8 Set 9 47.1 44.17 m2 45.93 48.73 51.83 51.6 53.2 41.45 47.3 51.29 42.93 42.46 45.07 45.68 41.65 46.3 46.79 46.9 47.02 46.89 52.03 47.74 47.44 46.46 53.92 46.04 52.98 43.16 49.62 50.71 53.76 47.75 46.863 Set 50.27 Set 4 43.67 Set 5 45.46 Set 6 43.44 Set 54.58 42.77 45.79 40.27 52.34 2 actual 44.74 48.4 Product Measurement system m measuremen t actual 5 act Set 46.43 50.03 1 observed Set 2 Actual Defects obs 6 7 8 9 10 11 Standard Deviation 12 Sample Variance 13 Kurtosis 14 Skewness 15 Range 16 Minimum Maximum Sum Count Set 1 varianceMean variance = Product Product = Std. Dev. 50.6 Defects 55.13 Observed MER30 1: Engi ne erin g R eliability Le ct ur e 1 6 Mean Standard Error Median Mode obs 16 Sample Data Sets- mean =48, standard deviation= 3 48.08 47.03 7 46.91 Set 8 44.16 47.9 Set 9 46.04 50.27 49.4 50.62 49.79 43.88 44.65 50.08 48.3275 49.1856 48.3719 48.66 47.4775 47.7338 47.5613 47.28 48.39 49.67 48.42 45.27 53.65 49.46 0.50234 0.89032 0.70222 0.78343 0.81784 0.94005 0.9694 48.97 47.6231 45.18 48.8475 50.59 46.09 48.105 48.895 45.23 48.49 51.33 49.665 44.4 46.43 43.32 47.83 50.13 48.51 52.33 51.91 48.34 48.01 49.36 47.92 44.84 #N/A #N/A #N/A #N/A #N/A #N/A #N/A 49.33 49.85 48.64 44.92 51.71 47.07 45.48 2.00934 3.56129 2.80888 3.13372 3.27134 3.76022 3.8776 46.64 46.43 50.55 49.54 46.18 51.91 42.72 4.03746 12.68281 7.88979 9.820227 10.70167 14.13923 15.0358 48.13 46.04 46.35 50.55 50.41 49.37 50.07 -0.41421 -0.246065 0.618507 -0.12713 -1.596104 -0.488753 -1.064871 49.77 53.56 46.99 51.11 48.43 51.42 47.56 0.261972 0.747306 0.283518 -0.836719 0.26528 -0.147822 -0.232884 46.25 49.6 49.64 47.05 46.68 43.9 53.98 7.59 12.34 11.65 10.52 8.87 13.38 12.53 47.3 56.51 51.76 50.64 52 48.56 49.63 44.74 44.17 42.93 42.46 43.16 40.27 41.45 52.33 56.51 54.58 52.98 52.03 53.65 53.98 773.24 786.97 773.95 778.56 759.64 763.74 760.98 49.92 47.08 42.6846.3 45.54 2.91185 49.65 8.47885 52.89 0.47499 45.66 0.662715 46.3 11.08 47.25 42.68 53.76 761.97 54.6248.08 50.48 #N/A 46.71 2.94839 47.65 8.69298 48.91 -0.341887 51.23 0.517647 48.26 10.28 44.34 44.34 54.62 781.56 16 16 16 16 16 16 16 16 16 48.22 0.72796 50.49 0.7371 Central Limit Theorem Means 48.3275 49.1856 48.3719 48.66 47.4775 47.7338 47.5613 47.6231 48.8475 3 / 16 0.75 3 48 L Berkley Davis Copyright 2009 Mean of 16 Sample Means Mean Standard Error 48.1987 0.20844 Median 48.3275 Mode #N/A Standard Deviation 0.62533 Sample Variance 0.391035 Kurtosis Skewness Range Minimum Maximum Sum Count -1.480405 0.272586 1.708125 47.4775 49.18563 433.7881 9 Example 7.4: Sampling Text Example 3-48 3-44 L Berkley Davis Copyright 2009 MER301: Engineering Reliability Lecture 7 24 Importance of the Central Limit Theorem Most of the work done by engineers relies on using experimentally derived data for material property values(eg, ultimate strength , thermal conductivity) and functional parameters (heat transfer coefficients), as well as measurements of actual system performance. These data are acquired by drawing samples from the full population. For all of these, the quantities of interest can be represented by a mean value and some measure of variance. The Central Limit Theorem provides quantitative guidance as to how much experimentation must be done to estimate the true mean of a population. L Berkley Davis Copyright 2009 MER301: Engineering Reliability Lecture 7 25 Summary Functions of Random Variables Linear Combinations of Random Variables Non-Independent Random Variables Non-linear Functions of Random Variables Central Limit Theorem L Berkley Davis Copyright 2009 MER301: Engineering Reliability Lecture 7 26
© Copyright 2026 Paperzz