QXPHULFDO PHWKRGV IRU RGHv
Frqvlghu wkh lqlwldo ydoxh sureohp
+ ' s E%c +c
%f $ %f $ Kc
+E%f ' tf
dqg ghqrwh lwv vroxwlrq e| t E%1 Prvw qxphulfdo phwk0
rgv vroyh wklv e| qglqj ydoxhv dw d vhw ri qrgh srlqwv=
%f % u u u % $ K
Wkh dssur{lpdwlqj ydoxhv duh ghqrwhg lq wklv errn lq
ydulrxv zd|v1 Prvw vlpso|/ zh kdyh
+ E t E%c u u u c + E t E% Zh dovr xvh
+E% +c
' fc c c Wr ehjlq zlwk/ dqg iru pxfk ri rxu zrun/ zh xvh d {hg
vwhsvl}h / dqg zh jhqhudwh wkh qrgh srlqwv e|
% ' %f n c
' fc c c Wkhq zh dovr zulwh
+E% + E t E%c
' fc c c HXOHU*V PHWKRG
Hxohu*v phwkrg lv ghqhg e|
+?n ' +? n s E%?c +?c
? ' fc c c 3
zlwk +f ' tf1 Zkhuh grhv wklv phwkrg frph iurpB
Wkhuh duh ydulrxv shuvshfwlyhv iurp zklfk zh fdq ghulyh
qxphulfdo phwkrgv iru vroylqj
+ ' s E%c +c
%f $ %f $ Kc
+E%f ' tf
dqg Hxohu*v phwkrg lv vlpsohvw h{dpsoh ri prvw vxfk
shuvshfwlyhv1 Pruhryhu/ wkh huuru dqdo|vlv iru Hxohu*v
phwkrg lv lqwurgxfwlrq wr wkh huuru dqdo|vlv ri prvw
pruh udslgo| frqyhujhqw +dqg pruh sudfwlfdo, qxphulfdo
phwkrgv1
D JHRPHWULF SHUVSHFWLYH
Orrn dw wkh judsk ri + ' t E%/ ehjlqqlqj dw % '
%f1 Dssur{lpdwh wklv judsk e| wkh olqh wdqjhqw dw
E%fc t E%f=
+ ' t E%f n E% 3 %ft E%f
' t E%f n E% 3 %fs E%fc tf
Hydoxdwh wklv wdqjhqw olqh dw % dqg xvh wklv ydoxh wr
dssur{lpdwh t E%1 Wklv |lhogv Hxohu*v dssur{lpdwlrq1
Zh frxog jhqhudol}h wklv e| orrnlqj iru pruh dffxudwh
phdqv ri dssur{lpdwlqj d ixqfwlrq/ h1j1 e| xvlqj d
kljkhu ghjuhh Wd|oru dssur{lpdwlrq1
y
Euler’s method: A Geometric Perspective
y=Y(x)
x0
x
x0+h
Iljxuh 4= D jhrphwulf shuvshfwlyh rq Hxohu*v phwkrg
WD\ORU*V VHULHV
Dssur{lpdwh t E% derxw %f e| d Wd|oru sro|qrpldo
dssur{lpdwlrq ri vrph ghjuhh=
2
t E%f n E t E%f n t E%f n t E%f
2R ER
n u u u n t E%f
RHxohu*v phwkrg lv wkh fdvh R ' =
t E%f n E t E%f n t E%f
' +f n s E%fc +f +
Zh kdyh dq huuru irupxod iru Wd|oru sro|qrpldo dssur{0
lpdwlrqv> dqg lq wklv fdvh/
2 t E% 3 + ' t E1 f
2
zlwk vrph %f $ 1 f $ %1
JHQHUDO HUURU IRUPXOD
Lq jhqhudo/
+?n ' +? n s E%?c +?c
? ' fc c c 3
2
t E%?n ' t E%? n t E%? n t E1 ?
2
2 ' t E%? n s E%?c t E%? n t E1 ?
2
zlwk vrph %? $ 1 ? $ %?n1
Zh zloo xvh wklv dv wkh vwduwlqj srlqw ri rxu huuru dqdo|0
vhv ri Hxohu*v phwkrg1 Lq sduwlfxodu/
t E%?n 3 +?n ' t E%? 3 +?
n d s E%?c t E%? 3 s E%?c +?o
2 n t E1 ?
2
QXPHULFDO GLIIHUHQWLDWLRQ
Iurp ehjlqqlqj fdofxoxv/
t E%? E
Wklv ohdgv wr
t E%? n 3 t E%?
t E%? n E t E%? n t E%?
' t E%? n s E%?c t E%?
E +? n s E%?c +?
Prvw qxphulfdo glhuhqwldwlrq dssur{lpdwlrqv fdq eh
xvhg wr rewdlq qxphulfdo phwkrgv iru vroylqj wkh lql0
wldo ydoxh sureohp1 Krzhyhu/ d qxpehu ri vxfk irupx0
odv wxuq rxw wr eh srru phwkrgv iru vroylqj glhuhqwldo
htxdwlrqv/ dqg zh zloo vhh dq h{dpsoh ri wklv lq wkh rqh
ri wkh iroorzlqj vhfwlrqv ri wkh errn1
QXPHULFDO LQWHJUDWLRQ
Frqvlghu wkh qxphulfdo dssur{lpdwlrq
] @n
@
}E% _% E }E@
zklfk lv fdoohg wkh ohiw0kdqg uhfwdqjoh uxoh1 Lw lv wkh
duhd ri wkh uhfwdqjoh zlwk edvh d@c @ n o dqg khljkw
}E@1
The left−hand rectangle quadrature rule
y=g(x)
x
a
a+h
Iljxuh 5= Wkh uhfwdqjoh uxoh
Uhwxuq wr wkh glhuhqwldo htxdwlrq + ' s E%c + dqg
vxevwlwxwh wkh vroxwlrq t E% iru +=
t E% ' s E%c t E%
Lqwhjudwh wklv ryhu wkh lqwhuydo d%?c %?no/
] %
?n
%?
t E% _% '
] %
?n
t E%?n ' t E%? n
%?
] %
s E%c t E% _%
?n
%?
s E%c t E% _%
Lqwhjudwh wklv zlwk wkh ohiw0kdqg uhfwdqjoh uxoh/
t E%?n E t E%? n s E%?c t E%?
Djdlq wklv ohdgv wr Hxohu*v phwkrg1
H[DPSOH
Frqvlghu wkh sureohp
+ ' 3+ n 2 ULt %c
+Ef '
Zh vroyh wklv rq wkh lqwhuydo f $ % $ D1 Orrn dw wkh
ehkdylrxu ri wkh huuru
eE% ' t E% 3 +E%
dv d ixqfwlrq ri erwk dqg %1
41 Iru d sduwlfxodu %/ wkh huuru dsshduv wr eh kdoyhg
zkhq lv kdoyhg1
51 Iru d {hg / wkh huuru ydulhv zlwk %/ dqg lw dsshduv
wr eh rvfloodwlqj lq vljq1
Iurp wklv/
eE% E SE%
vhhpv dffxudwh hpslulfdoo|/ zlwk SE% dq rvfloodwlqj ixqf0
wlrq ri %1
Euler’s method for solving y’ = −y + 2 cos(x)
1.5
1
0.5
x
0
−0.5
−1
−1.5
0
0.5
1
1.5
2
_ h=.2
2.5
−− h=.1
3
3.5
−. h=.05
4
4.5
5
Iljxuh 6= Vroxwlrq e| Hxohu*v phwkrg
Error in Euler’s method for solving y’ = −y + 2 cos(x)
0.15
0.1
0.05
x
0
−0.05
−0.1
−0.15
0
0.5
1
1.5
2
_ h=.2
2.5
−− h=.1
3
3.5
−. h=.05
4
4.5
5
Iljxuh 7= Huuru lq Hxohu vroxwlrq
HUURU DQDO\VLV 0 VSHFLDO FDVHV
Zh ehjlq zlwk d frxsoh ri vshfldo fdvhv/ wr rewdlq vrph
dgglwlrqdo lqwxlwlrq rq wkh ehkdylrxu ri wkh huuru eE% '
t E% 3 +E%1 Frqvlghu
+ ' 2%c
+Ef ' f
Wklv kdv wkh vroxwlrq t E% ' %21 Hxohu*v phwkrg eh0
frphv
+?n ' +? n 2%?c
+f ' f
+ ' +f n 2%f ' %%f
+2 ' + n 2% ' %%f n 2% ' %2%
+ ' +2 n 2%2 ' %2% n 2%2 ' %%2
E| lqgxfwlrq/
+? ' %?%?3c
?D
Iru wkh huuru/
t E%? 3 +? ' %2? 3 %?%?3 ' %?
Uhwxuq wr rxu huuru htxdwlrq
t E%?n 3 +?n ' t E%? 3 +?
n d s E%?c t E%? 3 s E%?c +?o
2 n t E1 ?
2
+4,
Zlwk wkh phdq ydoxh wkhruhp/
Ys E%?c l ?
dt E%? 3 +?o
s E%?c t E%? 3 s E%?c +? '
Y+
zlwk l ? ehwzhhq t E%? dqg +?1 Wkhq zh fdq zulwh
%
&
Ys E%?c l ?
2 eE%?n ' n eE%? n t E1 ?
2
Y+
+5,
zlwk eE%f ' f1 Zh dovr zloo dvvxph khqfhiruwk wkdw
Ys E%c + g 4@
"
%f$%$K
Y+ 3"+"
Frqvlghu wkrvh glhuhqwldo htxdwlrqv zlwk
Ys E%c +
$ fc
Y+
Wkhq
%f $ % $ Kc
3 $ n 3" + "
Ys E%?c l ?
$
Y+
surylghg lv fkrvhq vx!flhqwo| vpdoo/ l1h1
2
$
g
Xvlqj wklv lq rxu huuru irupxod +5,/
2 eE%?n $ eE%? n
t c
"
2
lq zklfk
?Df
+6,
t ' 4@ t E|
"
%f$|$K
Xvlqj lqgxfwlrq zlwk +6,/ zh fdq suryh
eE%? $ E%? 3 %f t "
2
Djdlq wkh huuru lv erxqghg e| vrphwklqj ri wkh irup
SE%?1
JHQHUDO HUURU DQDO\VLV
Uhwxuq wr
%
&
Ys E%?c l ?
2 eE%?n ' n eE%? n t E1 ?
2
Y+
Iru frpsdulvrq zlwk rwkhu qxphulfdo phwkrgv/ zh lq0
wurgxfh
? ' t E1 ?
2
E ' t "
2
Rxu huuru htxdwlrq ehfrphv
%
&
Ys E%?c l ?
eE%?n ' n eE%? n ?
Y+
Wdnh erxqgv wr rewdlq
eE%?n $ E n g eE%? n ?
$ E n g eE%? n E
+7,
E| lqgxfwlrq/ zh fdq vkrz wklv lpsolhv
eE%? $ E n g? eE%f
n
q
n E n g n n E n g?3
Wklv ohdgv wr
eE%? $
E n g?
Zh qhhg wkh iroorzlqj=
E n |? $ e?|c
r
E
E n g? 3
E
eE%f n
g
+8,
? D fc
3 $ | "
Wkhq +8, ohdgv wr
e?g 3
E
eE%? $
eE%f n
g
Vlqfh ? ' %? 3 %f/ zh kdyh
e?g
eE%?3%fg 3
E
eE%? $
eE%f n
g
Iru eE%f ' f/ zh kdyh wkdw wkh huuru kdv wkh jhqhudo
irup
eE%?3%fg
eE%? $ SE%?
VWDELOLW\ DQDO\VLV
Zh kdyh
+?n ' +? n s E%?c +?c
+f ' tf
Qrz frqvlghu shuwxuelqj wklv wr
5?n ' 5? n d s E%?c 5? n BE%?o c
5f ' tf n "
Lq zklfk BE% lv d erxqghg ixqfwlrq rq d%fc Ko1
Ohw e? ' 5? 3 +?1 Vxewudfwlqj deryh/
e?n ' e? n ds E%?c 5? 3 s E%?c +?o n BE%?
zlwk ef ' "1 Xvlqj wkh w|sh ri dqdo|vlv xvhg deryh/ zh
kdyh
e?n $ E n g e? n 8B8" c
?Df
Wklv |lhogv
eE%?3%fg 3
8B8"
e? $
" n
g
Wkxv zh kdyh d w|sh ri vwdelolw|/ lq zklfk wkh fkdqjh lq
wkh qxphulfdo vroxwlrq lv erxqghg e| d frqvwdqw wlphv
wkh fkdqjh lq wkh gdwd ri wkh lqlwldo ydoxh sureohp/ lq0
ghshqghqw ri 1
eE%?3%fg
Lq wkh fdvh rxu glhuhqwldo htxdwlrq vdwlvhv
Ys E%c +
$ fc
Y+
%f $ % $ Kc
3" + "
dqg wkh vwhsvl}h vdwlvhv g $ c zh fdq vkrz wkh
pxfk ehwwhu uhvxow
e? $ " n E%? 3 %f 8B8" c
?Df
HIIHFW RI URXQGLQJ HUURU
Djdlq frqvlghu wkh Hxohu phwkrg
+?n ' +? n s E%?c +?c
+f ' tf
Qrz frqvlghu wkdw urxqglqj huuruv rffxu lq wkh fdofx0
odwlrq ri +?n iurp +?1 Ohw +h? ghqrwh wkh qxphulfdo
ydoxhv dfwxdoo| frpsxwhg1 Wkhq zh kdyh
+h?n E +h? n s E%?c +h?c
+hf E tf
Wr kdyh dq htxdwlrq/ zulwh
+h?n ' +h? n s E%?c +h? n 4?c
+hf E tf
+9,
zlwk 4? wkh urxqglqj huuru1 Xvxdoo|/ 4? lv sursruwlrqdo
wr wkh xqlw urxqg ri wkh frpsxwhu/ dqg
4? $ & t E%? ru & +?
+:,
Iru vlqjoh suhflvlrq lq LHHH dulwkphwlf/ ' DbS f
f3H1
Qrz uhfdoo wkh htxdwlrq vdwlvhg e| wkh wuxh vroxwlrq
t E%=
2 t E%?n ' t E%? n s E%?c t E%? n t E1 ?
2
Ohw eh? ' t E%? 3 +h?1 Vxewudfw +9, iurp wklv htxdwlrq
dqg surfhhg dv ehiruh lq wkh ghulydwlrq ri huuru irupxodv1
Wklv |lhogv
%
&
Ys E%?c l ?
n
ehE%?
Y+
2 n t E1 ? 3 4?
2
Zulwh wkh odvw wzr whupv dv
4?
t E1 ? 3
2
dqg lghqwli| wklv zlwk ? lq wkh hduolhu huuru dqdo|vlv1
ehE%?n '
Xvlqj wkh hduolhu huuru dqdo|vlv/ wrjhwkhu zlwk +:, iru
4?/ zh jhw
ehE%? $ eE%?3%fg tf 3 +hf
%
&
E%
g
3%
?
f
& 8t 8"
e
3 n
t "n
2
g
Wklv vd|v wkdw dv ghfuhdvhv/ wkh huuru zloo lqlwldoo|
eh sursruwlrqdo wr / zkdw zh ghqrwh e| E1 Exw
hyhqwxdoo|/ wkh huuru zloo ehjlq wr lqfuhdvh djdlq dv ghfuhdvhv1 Dq h{dpsoh ri wklv lv vkrzq lq wkh wh{werrn
+sdjh 684,1 Wkdw h{dpsoh dovr vkrzv wkdw wkh huuru lv
pxfk zruvh zlwk fkrsshg dulwkphwlf wkdq zlwk urxqghg
dulwkphwlf1
DQ DV\PSWRWLF HUURU IRUPXOD
Uhfdoo wkh huuru irupxod
%
&
Ys E%?c l ?
2 eE%?n ' n eE%? n t E1 ?
2
Y+
iru wkh huuru eE%? ' t E%? 3 +?1 Lq wklv/ l ? lv
ehwzhhq t E%? dqg +?> dqg 1 ? lv ehwzhhq %? dqg %?n1
Zh qrz uhsodfh l ? e| t E%? dqg 1 ? e| %?/ wr wu| wr
qg wkh grplqdqw sduw ri wkh huuru eE%?1 Wklv |lhogv
d qhz huuru irupxod
%
&
Ys E%?c t E%?
2 }?n ' n }? n t E%? +;,
2
Y+
zlwk }? E e?/ dqg }f ' f1
Zh h{shfw }? wr eh sursruwlrqdo wr / dqg wkhuhiruh zh
zulwh }? ' B ?1 Vxevwlwxwlqj wklv lq +;,/ fdqfhoolqj /
dqg uh0duudqjlqj wkh htxdwlrq/ zh rewdlq
%
B ?n ' B ? n &
Ys E%?c t E%?
B ? n t E%?
2
Y+
zlwk B f ' f1 Wklv lv Hxohu*v phwkrg dssolhg wr wkh
glhuhqwldo htxdwlrq
(E%
Ys E%c t E%
'
(E% n t E%c
2
Y+
(E%f ' f
+<,
Wkxv
B ? E (E%?
}? E (E%?
e? E (E%?
Lq wkh errn/ lw lv vkrzq wkdw
e? ' (E%? n E2
+43,
Wklv lv fdoohg dq dv|pswrwlf huuru irupxod1 Lw whoov xv
krz wkh huuru ehkdyhv dv ehfrphv vpdoo1
H[DPSOH
Frqvlghu
+ ' 3+ 2c
+Ef '
Wkh wuxh vroxwlrq lv t E% ' *E n % Wkh htxdwlrq
+<, ehfrphv
(E%
32
'
(E% n
c
n%
E n %
(Ef ' f
dqg lwv vroxwlrq lv
*L}E% n
(E% '
E% n 2
Wkxv
*L}E%? n
2
t E%? 3 +? '
n
E
E%? n 2
ULFKDUGVRQ H[WUDSRODWLRQ
Vlqfh
t E% 3 +E% E (E%
iru dq| qrgh srlqw %/ zh dovr kdyh
t E% 3 +2E% E 2(E%
Frpelqlqj wkhvh/ zh kdyh
t E% 3 +2E% E 2 dt E% 3 +E%o
t E% E +E% n d+E% 3 +2E%o
+44,
t E% 3 +E% E +E% 3 +2E%
+45,
Wkh irupxod +44, lv fdoohg Ulfkdugvrq*v h{wudsrodwlrq
irupxod> dqg +45, lv fdoohg Ulfkdugvrq*v huuru hvwl0
pdwh1
V\VWHPV RI HTXDWLRQV
Frqvlghu d v|vwhp ri 5 uvw rughu htxdwlrqv=
+ ' sE%c +c +2c +E%f ' tcf
+2 ' s2E%c +c +2c +2E%f ' t2cf
Zh fdq dsso| wr hdfk htxdwlrq wkh w|shv ri dssur{lpd0
wlrqv xvhg hduolhu zlwk d vlqjoh htxdwlrq1 Wklv ohdgv wr
wkh qxphulfdo phwkrg
+c?n ' +c? n sE%?c +c?c +2c?c +cf ' tcf
+2c?n ' +2c? n s2E%?c +c?c +2c?c +2cf ' t2cf
Li zh zulwh wkh v|vwhp lq wkh yhfwru irup
) ' u E%c )c
)E%f ' vf
wkhq wkh qxphulfdo phwkrg fdq eh zulwwhq lq wkh yhfwru
irup
)?n ' )? n u E%c )?c
)f ' vf
PHDQ0YDOXH WKHRUHP
Iru wkh huuru dqdo|vlv/ zh uvw qhhg wkh iroorzlqj pxowl0
yduldeoh irup ri wkh phdq0ydoxh wkhruhp1 Iru d ixqfwlrq
}E+c c +6 ri 6 yduldeohv/ dovr zulwh lw dv }E) zlwk
) ' d+c c +6oA
Zh orrn dw zkdw kdsshqv wr wkh ydoxh ri wkh ixqfwlrq
zkhq wkh yduldeohv duh fkdqjhg1 Lq sduwlfxodu/
}E) 3 }E3 ' Q}El u E) 3 3
zlwk l vrph srlqw rq wkh olqh vhjphqw mrlqlqj ) dqg 31
Iru wzr yduldeohv/ wklv vd|v
}E+c +2 3 }E5c 52
Y}El Y}El '
E+ 3 5 n
E+2 3 52
Y+
Y+2
zlwk l rq wkh olqh mrlqlqj ) dqg 31
Frqvlghu qrz
s E%c +c +2 3 s E%c 5c 52
Ys E%c l Ys E%c l '
E+ 3 5 n
E+2 3 52
Y+
Y+2
Zh dsso| wklv zlwk s dqg s21 Wklv |lhogv iru ' c 2/
sE%c +c +2 3 sE%c 5c 52
YsE%c l YsE%c l '
E+ 3 5 n
E+2 3 52
Y+
Y+2
zlwk l rq wkh olqh vhjphqw mrlqlqj E+c +2 dqg E5c 521
Zh fdq zulwh wklv lq pdwul{0yhfwru irup dv
u E%c ) 3 u E%c 3 ' 8 E) 3 3
zlwk 8 wkh 2 f 2 pdwul{
5
9
9
8 '9
9
7
YsE%c l YsE%c l
Y+
Y+2
Ys2E%c l 2 Ys2E%c l 2
Y+
Y+2
6
:
:
:
:
8
zkhuh erwk l dqg l duh rq wkh olqh vhjphqw mrlqlqj
E+c +2 dqg E5c 521
Zkhq ) lv forvh wr 3/ wkh pdwul{ 8 lv forvh wr wkh Mdfr0
eldq pdwul{
5
YsE%c )
9
9
Y+
u)E%c ) ' 9
9 Ys E%c )
2
7
Y+
YsE%c )
Y+2
Ys2E%c )
Y+2
6
:
:
:
:
8
Iru dq 6 f yhfwru dqg dq 6 f 6 pdwul{ / zh
lqwurgxfh wkh qrupv
88" ' 4@
$$6
6 [
88 ' 4@
c $$6
'
Wkhq lw fdq eh vkrzq wkdw
88" $ 88 88"
Zh dsso| wklv wr
u E%c ) 3 u E%c 3 ' 8 E) 3 3
wr rewdlq
8u E%c ) 3 u E%c 38" $ 88 8 8) 3 38"
Orrnlqj dw wkh ghqlwlrq ri 8 dqg ri 88 8/ zh lqwurgxfh
6
[ YsE%c +c +2 74@
g'
4@
8
3"+c+2"
Y+
%f$%$K
5
dqg zh dvvxph lw lv d qlwh qxpehu1 Wkhq
8u E%c ) 3 u E%c 38" $ g 8) 3 38"
Wklv lv wkh uhsodfhphqw wr wkh lqhtxdolw|
s E%c + 3 s E%c 5 $ g + 3 5
zlwk
Ys E%c + g'
4@
3"+" Y+ %f$%$K
iru zrunlqj zlwk d vlqjoh htxdwlrq + ' s E%c +1
Zh fdq lplwdwh wkh hduolhu surriv wr vkrz frqyhujhqfh/
zlwk
8vE%? 3 )?8" $ eE%?3%fg 8vf 3 )f8"
eE%?3%fg 3
4@
n
v E%"
%f$%$K
2g
Wkh rwkhu uhvxowv iru d vlqjoh htxdwlrq kdyh vlplodu dqd0
orjxhv zkhq vroylqj v|vwhpv ri uvw rughu htxdwlrqv1
Wkh irupxod iru dq dv|pswrwlf huuru irupxod lv jlyhq lq
wkh wh{w1
© Copyright 2025 Paperzz